Electrochemical preparation of nanostructured TiO2 as anode materials for Li ion batteries


TiO2 is an attractive anode material for Li-ion batteries due to its high capacity, high mechanical stability during Li intercalation/deintercalation process, limited side reactions with the electrolyte, low cost, and environmental friendliness. In this study, titanium hydroxide gel films were prepared in acidic aqueous solutions of TiOSO4, H2O2 and KNO3 by potentiostatic cathodic electrosynthesis on various copper substrates, including planar Cu foil, mechanically polished planar Cu foil, and Cu nanorod arrays grown on Cu foil. Crystalline TiO2 films were obtained by heat treating the electrodeposited titanium hydroxide gel films at 500 °C in argon atmosphere. The morphology and microstructure of the TiO2 films were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). SEM results showed that after deposition, each Cu nanorod has been covered by a layer of TiO2 gel, forming a core-shell structure. The effects of Cu nanorod arrays on the morphology and the electrochemical property of the TiO2 deposits were discussed.

This is a preview of subscription content, access via your institution.


  1. 1.

    P.G. Bruce, B. Scrosati, and J.M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    J. Li, Z. Tang, and Z. Zhang, Electrochem. Comm. 7, 62 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    P.G. Bruce, Chem. Commun. 19, 1817 (1997).

    Article  Google Scholar 

  4. 4.

    V. Subramanian, A. Karki, K.I. Gnanasekar, F. P. Eddy and B. Rambabu, J. Power Sources 159, 186 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    M. Hibino, K. Abe, M. Mochizuki and M. Miyayama, J. Power Sources 126, 139 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    M. Wagemaker, A.P.M. Kentgens and F.M. Mulder, Nature 418, 397 (2002).

    CAS  Article  Google Scholar 

  7. 7.

    Y.K. Zhou, L. Cao, F. B. Zhang and H.L. Li, J. Electrochemical Society 150, A1246 (2003).

  8. 8.

    A. Guerfi, P. Charest, K. Kinoshita, M. Perrier and K. Zaghib, J. Power Sources 126, 163 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    A. R. Armstrong, G. Armstrong, J. Canales and P.G. Bruce, J. Power Sources 146, 501 (2005).

    CAS  Article  Google Scholar 

  10. 10.

    J. O. Besenhard, J. Yang, and M. Winter, J. Power Sources 68, 87 (1997).

    CAS  Article  Google Scholar 

  11. 11.

    J.S. Gnanaraj, J.F. DiCarlo, H. Duan, J. Liang, R.W. Thompson, 10th Power Source R&D Symposium, Williamsburg, VA, 2007.

  12. 12.

    H. Duan, J. Gnanaraj, X. Chen, B. Li, and J. Liang, J. Power Sources 185, 512 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    X. Chen, H. Duan, Z. Zhou, J. Liang, J. Gnanaraj, Nanotechnology 19, 365306 (2008).

    Article  Google Scholar 

  14. 14.

    S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, Solid State Ionics 151, 19 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    B.R. Sankapal, S.D Sartale, M.C. Lux-Steiner, and A. Ennaoui, C.R. Chimie 9, 702 (2006).

    CAS  Article  Google Scholar 

  16. 16.

    J. Georgieva, S. Armyanov, E. Valova, I. Poulios, S. Sotiropoulos, Electrochem. Acta. 51, 2076 (2006).

    CAS  Article  Google Scholar 

  17. 17.

    I. Zhitomirski, L. Gal-Or, A. Khon and M.D. Spang, J. Mater. Sci. 32, 803 (1997).

    Article  Google Scholar 

  18. 18.

    I. Zhitomirski and L. Gal-Or, J. Eur. Ceram. Soc. 16, 819 (1996).

    Article  Google Scholar 

  19. 19.

    J. Liang, H. Chik, and J. Xu, IEEE J. Sel. Top. Quantum Electron. 8, 998 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    H. Chik, J. Liang, S.G. Cloutier, N. Koukli, and J.M. Xu, Appl. Phys. Lett. 84, 3376 (2004).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Huanan Duan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duan, H., Chen, X., Gnanaraj, J. et al. Electrochemical preparation of nanostructured TiO2 as anode materials for Li ion batteries. MRS Online Proceedings Library 1127, 102 (2008). https://doi.org/10.1557/PROC-1127-T01-02

Download citation