Magnetite Sorption Capacity for Strontium as a Function of pH


The ubiquity of iron oxide minerals and their ability to retain metals on their surface can represent an important retardation factor to the mobility of radionuclides. In a deep repository for the spent nuclear fuel, the intrusion of the groundwater might produce the anoxic corrosion of the iron, with magnetite as one of the end-products. In this study, as expected considering the strontium speciation in solution, strontium is sorbed onto magnetite at alkaline pH values while at acidic pH the sorption is negligible. Magnetite is able to sorb more than the 50% of the strontium from a 8·10-6 mol·dm-3 solution at the pH range representative of most groundwater (7-9). A surface complexation model has been applied to the experimental data, allowing to explain the results using the Diffuse Layer Model (DLM) and considering the formation of the inner-sphere complex >FeOHSr2+ (with a calculated logK=2.7±0.3). Considering these data, the magnetite capacity to retain strontium and other radionuclides is discussed

This is a preview of subscription content, access via your institution.


  1. 1

    E. Smailos, W. Swarzkopf, B. Kienzler, R. Köster in Scientific Basis for Nuclear Waste Management XV, edited by C.G. Sombret (Mater. Res. Soc. Symp. Proc. 257, Pittsburg PA, 1992) pp. 399–406.

  2. 2

    M. Martnez, J. Giménez, J. de Pablo, M. Rovira, L. Duro, Appl. Surf. Sci. 252, 3767 (2006).

    Article  Google Scholar 

  3. 3

    M. Rovira, J. de Pablo, I. Casas, J. Giménez, F. Clarens, in Scientific Basis for Nuclear Waste Management XXVII, edited by V.M Oversby and L.O. Werme (Mater. Res. Soc. Symp. Proc. 807, Pittsburg PA, 2004) pp. 677–682.

    Google Scholar 

  4. 4

    M. Rovira, J. de Pablo, I. Casas, J. Giménez, F. Clarens, X. Martínez-Lladó in Scientific Basis for Nuclear Waste Management XXIX, edited by P. Van Iseghem (Mater. Res. Soc. Symp. Proc. 932, Pittsburg PA, 2006) pp. 143–150.

    Google Scholar 

  5. 5

    M. Todorovic, S.K. Milonjic, J.J. Comor, I.J. Gal, Sep. Sci. Technol. 27, 671 (1992).

    CAS  Article  Google Scholar 

  6. 6

    A.D. Ebner, J.A. Ritter, J.D. Navratil, Ind. Eng. Chem. Res. 40, 1615 (2001).

    CAS  Article  Google Scholar 

  7. 7

    D.A. Dzombak, F.M. Morel in Surface Complexation Modeling. Hydrous Ferric Oxide. (Wiley-Interscience, New York, 1990).

    Google Scholar 

  8. 8

    A.L. Herbelin, J.C. Westall, FITEQL 4.0: a Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data. (Department of Chemistry, Oregon State University, Corvallis, 1999).

    Google Scholar 

  9. 9

    J.A. Davies, D.B. Kent, Rev. Mineralogy 23, 117 (1990).

    Google Scholar 

  10. 10

    T. Missana, M. García, C. Maffiotte, Uranium(VI) sorption on goethite: Experimental study and surface complexation modelling. ENRESA Report 02/2003 (Madrid, Spain, 2003).

    Google Scholar 

  11. 11

    J.W. Ball, D. K. Nordstrom WATEQ4F. User’s manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters: U.S. Geological Survey Open-File Report 90-129, (1991).

  12. 12

    L. Axe, P.R. Anderson, J. Colloid Interf. Sci. 175, 157 (1995).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Pablo de Joan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Joan, P., Miquel, R., Javier, G. et al. Magnetite Sorption Capacity for Strontium as a Function of pH. MRS Online Proceedings Library 1107, 593 (2008).

Download citation