Skip to main content
Log in

Molecular Characterisation of Dissolved Organic Matter (DOM) in Groundwaters from the Äspö Underground Research Laboratory, Sweden: A Novel “Finger Printing Tool for Palaeohydrological Assessment

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The molecular signature of dissolved organic matter (DOM) in groundwaters can be used as a tool when investigating the palaeohydrological response of groundwater systems in relation to changes in recharge environment, and also for examining groundwater compartmentalisation, mixing and transport at underground repositories for radioactive waste. The DOM in groundwaters from two compartmentalised bodies of groundwater of distinctly different origin within the Äspö Underground Research Laboratory (URL), Sweden and in Baltic seawater has been isolated using tangential flow ultrafiltration (TUF) and diafiltration. Recoveries of DOM ranged from 34.7 to 0.1 mg/L with substantial differences in the concentrations of the groundwaters collected only 120 m apart. Analysis by infrared spectroscopy (IR) and pyrolysisgas chromatography-mass spectrometry (Py-GC-MS) of the isolated DOM revealed that the groundwaters contained abundant alkylphenols which may represent heavily decomposed proteins or lignins originating from biopolymers contained within soils. The difference in the distribution and relative abundance of major pyrolysis products groups such as alkyphenols confirmed that the groundwater and Baltic seawater DOM samples were chemically distinct indicating minimal infiltration of marine groundwater derived by recharge from the Baltic or earlier Littorina Sea within the two compartmentalised groundwater bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bath, A. Milodowski, P. Ruotsalainen, E-T. Tullborg, A. Cortés Ruiz and J.F. Aranyossy, EUR 19613 (2000), European Commission Luxembourg.

    Google Scholar 

  2. P. Degnan, A. Bath, A. Cortés, J. Delgado, R.S. Haszeldine, A. Milodowski, I. Puigdomenech, F. Recreo, J. Šilar, T. Torres and E-L. Tullborg . PADAMOT: Project Overview Report. United Kingdom Nirex Limited (2005).

    Google Scholar 

  3. R. Metcalfe, P.J. Hooker, W.G. Darling and A.E. Milodowski, in dating and duration of fluid flow and fluid-rock interaction. Geological Society of London Special Publication, 144, 233–260.

  4. A.E. Milodowski, E-L. Tullborg, B. Buil, P. Gómez, M-J. Turrero, S. Haszeldine, G England, M.R. Gillespie, T. Torres, J.E. Ortiz, J. Zachariáš, J. Silar, M. Chvátal, L. Strnad, O. Šebek, J.E. Bouch, S.R. Chenery, C. Chenery, T.J. Shepherd and J.A. McKervey, J.A. PADAMOT Project Technical Report WP2. United Kingdom Nirex Limited (2005).

    Google Scholar 

  5. P.A. Meyers, Org. Geochem, 27, 213–250 (1997).

    Article  CAS  Google Scholar 

  6. R. Benner and S. Opsahl, Org. Geochem. 32, 597–611 (2001).

    Article  CAS  Google Scholar 

  7. R. Benner, B. Biddanda, B. Black and McCarthy M, Mar. Chem, 57, 243–263 (1997).

    Article  CAS  Google Scholar 

  8. M. Goni, M. Teixeira and D.W. Perkey, D. W. Est. Coast. Shelf Sci. 57, 1023–1048 (2003).

    Article  CAS  Google Scholar 

  9. X.Q. Lu, N. Maie, J.V. Hanna, D.L. Childers and R. Jaffe, R. Water Res. 37, 2599–2606 (2003).

    Article  CAS  Google Scholar 

  10. S.W. Frazier, K.O. Nowack, K.M. Goins, F.S. Cannon, L.A. Kaplan and P.G. Hatcher, J. Anal. Appl. Pyrolysis, 70, 99–128 (2003).

    Article  CAS  Google Scholar 

  11. S. Opsahl and R. Benner, Nature, 386, 480–482 (1987).

    Article  Google Scholar 

  12. C.H. Vane Int. Biodet. Biodeg, 51, 67–75 (2003).

    Article  CAS  Google Scholar 

  13. J.D.H. van Heemst, P.F. van Bergen, B.A. Stankiewicz and J.W. de Leeuw, J. Anal. Appl. Pyrolysis, 52, 239–256 (1999).

    Article  Google Scholar 

  14. J. Templier, S. Derenne, J-P. Croue and C. Largeau, Org. Geochem. 36, 1418–1442 (2005).

    Article  CAS  Google Scholar 

  15. J.D.H. van Heemst, L. Megens, P.G. Hatcher and J.W. de Leeuw, Org. Geochem, 31, 847–857 (2000).

    Article  Google Scholar 

  16. D.H. Williams and I. Fleming, Spectroscopic methods in organic chemistry, edited by P. Sykes (McGraw-Hill, Maidenhead, 1966), p. 55.

    Google Scholar 

  17. C.H. Vane, C. H. Appl. Spectroscopy, 57, 514–517 (2003).

    Article  CAS  Google Scholar 

  18. Y. Inbar, Y. Chen and Y Hadar, Soil Sci. Soc. of Amer. J. 54, 1316–1323 (1990).

    Article  CAS  Google Scholar 

  19. S. Tsuge and H. Matsubara, J. Anal. Appl. Pyrolysis, 8, 49–64 (1985).

    Article  CAS  Google Scholar 

  20. J. Ralph and R. Hatfield, J. Agric.Food Chem. 39, 1426–1437 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christopher, H.V., Alexander, W.K., Antoni, E.M. et al. Molecular Characterisation of Dissolved Organic Matter (DOM) in Groundwaters from the Äspö Underground Research Laboratory, Sweden: A Novel “Finger Printing Tool for Palaeohydrological Assessment. MRS Online Proceedings Library 1107, 557 (2008). https://doi.org/10.1557/PROC-1107-557

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1107-557

Navigation