Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines

Abstract

A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75°C and at 90°C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions

This is a preview of subscription content, access via your institution.

References

  1. 1

    ASTM International, Standard B575, Vol. 02.04 (ASTM, 2002: West Conshohocken, PA).

    Google Scholar 

  2. 2

    Haynes International, Hastelloy C-22 Alloy, Brochure H-2019E (Haynes International, 1997: Kokomo, IN).

    Google Scholar 

  3. 3

    R. B. Rebak in Corrosion and Environmental Degradation, Volume II, p. 69, Wiley-VCH, Weinheim, Germany (2000).

  4. 4

    R. B. Rebak and P. Crook, “Nickel Alloys for Corrosive Environments,” Advanced Mater. & Proc., 157, 37, 2000.

    CAS  Google Scholar 

  5. 5

    R. B. Rebak and P. Crook, Influence of the Environment on the General Corrosion Rate of Alloy 22,” PVP-Vol. 483 pp. 131–136 (ASME, 2004: New York, NY).

  6. 6

    R. B. Rebak and Joe H. Payer, Passive Corrosion Behavior of Alloy 22,” ANS Conf. International High Level Radioactive Waste Management, Las Vegas 30Apr-04May 2006.

    Google Scholar 

  7. 7

    R. B. Rebak and P. Crook, “Improved Pitting and Crevice Corrosion Resistance of Nickel and Cobalt Based Alloys,” ECPV 98-17, pp. 289–302 (The Electrochemical Society, 1999: Pennington York, NJ).

    Google Scholar 

  8. 8

    B. A. Kehler, G. O. Ilevbare and J. R. Scully, Corrosion, 1042 (2001).

  9. 9

    K. J. Evans and R. B. Rebak in Corrosion Science – A Retrospective and Current Status in Honor of Robert P. Frankenthal, PV 2002-13, p. 344–354 (The Electrochemical Society, 2002: Pennington, NJ).

    Google Scholar 

  10. 10

    K. J. Evans, S. D. Day, G. O. Ilevbare, M. T. Whalen, K. J. King, G. A. Hust, L. L. Wong, J. C. Estill and R. B. Rebak, PVP-Vol. 467, Transportation, Storage and Disposal of Radioactive Materials –2003, p. 55 (ASME, 2003: New York, NY).

    Google Scholar 

  11. 11

    Y-M. Pan, D. S. Dunn and G. A. Cragnolino in Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment and Structures, STP 1401, pp. 273–288 (West Conshohocken, PA: ASTM 2000).

    Google Scholar 

  12. 12

    R. B. Rebak in Environmentally Assisted Cracking: Predictive Methods for Risk Assessment and Evaluation of Materials, Equipment and Structures, STP 1401, pp. 289–300 (West Conshohocken, PA: ASTM 2000).

    Google Scholar 

  13. 13

    C. S. Brossia, L. Browning, D. S. Dunn, O. C. Moghissi, O. Pensado and L. Yang, “Effect of Environment on the Corrosion of Waste Package and Drip Shield Materials,” Publication of the Center for Nuclear Waste Regulatory Analyses (CNWRA 2001-03), September 2001.

    Google Scholar 

  14. 14

    D. S. Dunn, L. Yang, Y.-M. Pan and G. A. Cragnolino, “Localized Corrosion Susceptibility of Alloy 22,” Paper 03697 (NACE International, 2003: Houston, TX).

    Google Scholar 

  15. 15

    K. J. Evans, A. Yilmaz, S. D. Day, L. L. Wong, J. C. Estill and R. B. Rebak, “Comparison of Electrochemical Methods to Determine Crevice Corrosion Repassivation Potential of Alloy 22 in Chloride Solutions, JOM, p. 56, January 2005.

  16. 16

    G. A. Cragnolino, D. S. Dunn and Y.-M. Pan, “Localized Corrosion Susceptibility of Alloy 22 as a Waste Package Container Material,” Scientific Basis for Nuclear Waste Management XXV, Vol. 713 (Materials Research Society 2002: Warrendale, PA).

  17. 17

    D. S. Dunn and C. S. Brossia, “Assessment of Passive and Localized Corrosion Processes for Alloy 22 as a High-Level Nuclear Waste Container Material,” Paper 02548 (NACE International, 2002: Houston, TX).

    Google Scholar 

  18. 18

    J. H. Lee, T. Summers and R. B. Rebak, “A Performance Assessment Model for Localized Corrosion Susceptibility of Alloy 22 in Chloride Containing Brines for High Level Nuclear Waste Disposal Container,” Paper 04692 (NACE International, 2004: Houston, TX).

    Google Scholar 

  19. 19

    D. S. Dunn, L. Yang, C. Wu and G. A. Cragnolino, Material Research Society Symposium, Spring 2004, San Francisco, Proc. Vol. 824 (MRS, 2004:Warrendale, PA).

    Google Scholar 

  20. 20

    D. S. Dunn, Y.-M. Pan, L. Yang and G. A Cragnolino and X. He, “Localized Corrosion Resistance and Mechanical Properties of Alloy 22 Waste Package Outer Containers” JOM, January 2005, pp 49–55.

  21. 21

    R. B. Rebak, “Factors Affecting the Crevice Corrosion Susceptibility of Alloy 22,” Paper 05610, Corrosion/2005 (NACE International, 2005: Houston, TX).

    Google Scholar 

  22. 22

    D. S. Dunn, Y.-M. Pan, L. Yang and G. A Cragnolino, Corrosion, 61, 11, 1076, 2005.

    Article  Google Scholar 

  23. 23

    G. O. Ilevbare, K. J. King, S. R. Gordon, H. A. Elayat, G. E. Gdowski and T. S. E. Gdowski, Journal of The Electrochemical Society, 152, 12, B547–B554, 2005.

    CAS  Article  Google Scholar 

  24. 24

    D. S. Dunn, Y.-M. Pan, L. Yang, and G. A. Cragnolino, Corrosion, 61, 1078 (2005).

    CAS  Article  Google Scholar 

  25. 25

    D. S. Dunn, Y.-M. Pan, L. Yang, and G. A. Cragnolino, Corrosion, 62, 3 (2006).

    CAS  Article  Google Scholar 

  26. 26

    G. O. Ilevbare, Corrosion, 62, 340 (2006).

    CAS  Article  Google Scholar 

  27. 27

    R. M. Carranza, M. A. Rodríguez, and R. B. Rebak, Corrosion, 63, 480 (2007).

    CAS  Article  Google Scholar 

  28. 28

    R. B. Rebak, “Mechanisms of Inhibition of Crevice Corrosion in Alloy 22,” in proceedings of Scientific Basis for Nuclear Waste Management XXX, (MRS, 2006: Warrendale, PA).

    Google Scholar 

  29. 29

    ASTM International, Volume 03.02 “Wear and Erosion; Metal Corrosion” (ASTM International, 2003: West Conshohocken, PA).

    Google Scholar 

  30. 30

    K. J. Evans, L. L. Wong and R. B. Rebak Determination of the Crevice Repassivation Potential of Alloy 22 by a Potentiodynamic-Galvanostatic-Potentiostatic Method,” PVPASME Vol. 483, pp. 137–149 (American Society of Mechanical Engineers, 2004: New York, NY).

  31. 31

    K. J. Evans and R. B. Rebak “Determination of the Crevice Repassivation Potential of Alloy 22 by a Potentiodynamic-Galvanostatic-Potentiostatic Method,” (to be published in JAI, the journal or ASTM International).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Rebak Raul.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Raul, B.R., Gabriel, O.I. & Ricardo, M.C. Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines. MRS Online Proceedings Library 1107, 527 (2008). https://doi.org/10.1557/PROC-1107-527

Download citation