Recoil Based Fuel Breeding Fuel Structure

Abstract

Nuclear transmutation reactions are based on the absorption of a smaller particle as neutron, proton, deuteron, alpha, etc. The resulting compound nucleus gets out of its initial lattice mainly by taking the recoil, also with help from its sudden change in chemical properties. The recoil implantation is used in correlation with thin and ultra thin materials mainly for producing radiopharmaceuticals and ultra-thin layer radioactive tracers. In nuclear reactors, the use of nano-particulate pellets could facilitate the recoil implantation for breeding, transmutation and partitioning purposes. Using enriched 238U or 232Th leads to 239Pu and 233U production while using other actinides as 240Pu, 241Am etc. leads to actinide burning. When such a lattice is immersed into a radiation resistant fluid (water, methanol, etc.), the recoiled product is transferred into the flowing fluid and removed from the hot area using a concentrator/purifier, preventing the occurrence of secondary transmutation reactions. The simulation of nuclear collision and energy transfer shows that the impacted nucleus recoils in the interstitial space creating a defect or lives small lattices. The defect diffuses, and if no recombination occurs it stops at the lattices boundaries. The nano-grains are coated in thin layer to get a hydrophilic shell to be washed by the collection liquid the particle is immersed in. The efficiency of collection depends on particle magnitude and nuclear reaction channel parameters. For 239Pu the direct recoil extraction rate is about 70% for 238UO2 grains of 5 nm diameters and is brought up to 95% by diffusion due to 239Neptunium incompatibility with Uranium dioxide lattice. Particles of 5 nm are hard to produce so a structure using particles of 100 nm have been tested. The particles were obtained by plasma sputtering in oxygen atmosphere. A novel effect as nanocluster radiation damage robustness and cluster amplified defects rejection will be discussed. The advantage of the method and device is its ability of producing small amount of isotopic materials easy to separate, using the nuclear reactors, with higher yield than the accelerator based methods and requiring less chemistry. It also represents a reliable candidate for nuclear fuel breeding reducing the cost of super-grade Plutonium and Thorium toward the price of urania and thoria.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Nuclear Energy Institute, Uranium Fuel Supply Adequate to Meet Present and Future Nuclear Energy Demand. Policy Brief, 2007.

  2. 2

    Hedrick J. B., Thorium. US Geological Survey, 2005. Mineral Commodity Summaries.

  3. 3

    Jayaram K.M.V., An Overview Of World Thorium Resources, Incentives For Further Exploration And Forecast For Thorium Requirements In The Near Future. Atomic Minerals Division,, 2004. Department of Atomic Energy,Hyderabad, India: p. 14.

    Google Scholar 

  4. 4

    US Arms Control Agency, Weapon-grade plutonium and highly enriched uranium production, in PLUTONIUM AND HIGHLY ENRICHED URANIUM. 1996.

  5. 5

    US Arms Control Agency, Civil Highly Enriched Uranium Inventories. 1996.

  6. 6

    Ragheb M., Isotopic Separation and Enrichment, in Nuclear reactors. 2007.

  7. 7

    Smith K., Nuclear Fuel Prices Up 300%. Are you hedged? Evolution Markets Executive Briefs, 2006. 28.

  8. 8

    Taube, Plutonium - a general survey. NEA, 1974. wed-database.

  9. 9

    McKinney G., MCNPx 2.6. User Manual, 2004. 1(1): p. 1–457.

    Google Scholar 

  10. 10

    ZIGLER J.F., Stopping of energetic light ions in Elemental Matter. Journal of Applied Physics, 1999. 85: p. 1249–1272.

    Google Scholar 

  11. 11

    Estrin Y., K.H.S., Nabarro F.R.N.,, A comment on the role of Frank–Read sources in plasticity of nanomaterials. Acta Materiala, 2007. 55: p. 6401–6407.

    CAS  Article  Google Scholar 

  12. 12

    Bulatov V.L., G.R.W., Harker A.H.,, The Mobility of Ions in Lanthanum Fluoride Nanoclusters. JOM, 1997. 49(4): p. 14.

    Article  Google Scholar 

  13. 13

    Shen T. D., F.S., Tang M., Valdez J.A., Wang Y., Sickafus K.E.,, Enhanced radiation tolerance in nanocrystalline MgGa2O4. APPLIED PHYSICS LETTERS, 2007. 90: p. 263115.

    Google Scholar 

  14. 14

    Samaras M., D.P.M., Van Swygenhoven H., Victoria M.,, SIA activity during irradiation of nanocrystalline Ni. Journal of Nuclear Materials, 2003. 323: p. 213–219.

    CAS  Article  Google Scholar 

  15. 15

    Nabarro F.R.N. , Stress-Driven Grain Growth. Scripta Materialia, 1998. 39(12,): p. 1681–1683.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Liviu Popa-Simil.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Popa-Simil, L. Recoil Based Fuel Breeding Fuel Structure. MRS Online Proceedings Library 1104, 721 (2008). https://doi.org/10.1557/PROC-1104-NN07-21

Download citation