Orbital Hybridization in Uranium Compounds and its Influence on Electronic Properties


Computational analysis and modeling of spectroscopic properties of trivalent uranium in crystals of hexagonal symmetry have been conducted with inclusion of the crystal-field induced orbital hybridization between the 5f3 and 5f26d configurations. It is shown that, in the absorption spectrum with energy above 20,000 cm-1, the mixing of 5f3 and 5f26d states is significant. The spectrum in this region cannot be interpreted by the conventional model of crystal field theory. The Judd-Ofelt theory is completely failed in predicating the intensities of optical absorption from the ground state to the configuration mixed excited states. A new Hamiltonian including the odd ranks of crystal field interaction is diagonalized on the bases of all 5f3 and 5f26d states. A simulation of absorption spectrum is optimized in comparison with the experimental spectrum for determination of the Hamiltonian parameters.

This is a preview of subscription content, access via your institution.


  1. 1

    E.F. Schubert and J.K. Kim, Science, 308, 1274 (2005).

    CAS  Article  Google Scholar 

  2. 2

    M.B. Seelbinder and J.C. Wright, Phys.Rev.B, 20, 4308 (1979).

    CAS  Article  Google Scholar 

  3. 3

    E. Mulazzi, G.F. Nardelli and N. Terzi, Phys.Rev. 172, 847 (1968).

    CAS  Article  Google Scholar 

  4. 4

    R. M. Macfarlane and R. M. Shellby, in Spectroscopy of solids containing rare earth ions, ed. A. A. Kaplyanskii and R. M. Macfarlane, ( North-Holland, 1987), p62–100.

  5. 5

    G. K. Liu, in “Spectroscopic Properties of Rare Earths in Optical Materials” ed. G. K. Liu and B. Jacquier, (Springer-Verlag, 2005), p1–94.

  6. 6

    B.G. Wybourne, Spectroscopic Properties of Rare Earths, (John Wiley & Sons, Inc., 1965) pp.194–205.

  7. 7

    W. T. Carnall, J. Chem. Phys, 96, 8713(1992).

    CAS  Article  Google Scholar 

  8. 8

    G.K. Liu and J.V. Beitz, in “the chemistry of the actinide and transactinide eelements”, ed. Lester r. Morss, Jean Fuger, and Norman Edelstein, (springer, 2006), pp2013-2111.

  9. 9

    H.M. Crosswhite, H. Crosswhite, W.T. Carnall, and A.P. Paszek, J. Chem. Phys. 72, 5103(1980)

    CAS  Article  Google Scholar 

  10. 10

    B.R. Judd, Phys.Rev. 127, 750 (1962).

    CAS  Article  Google Scholar 

  11. 11

    G.S. Ofelt, J.Chem.Phys. 37, 511 (1962).

    CAS  Article  Google Scholar 

  12. 12

    M.F. Reid, L. van Pieterson, R.T. Wegh and A. Meijerink, Phys.Rev.B 62, 14744 (2000).

    CAS  Article  Google Scholar 

  13. 13

    B.R. Judd, H.M. Crosswhite and H. Crosswhite, Phys.Rev. 169, 130 (1968).

    CAS  Article  Google Scholar 

  14. 14

    R. Furrer and C.A. Hutchison, Jr., Phys.Rev.B 27, 5270 (1983).

    CAS  Article  Google Scholar 

  15. 15

    G.K. Liu, X.Y. Chen and J. Huang, Molecular Phys. 101, 1029 (2003)

    CAS  Article  Google Scholar 

  16. 16

    G.K. Liu, X,Y. Chen, N.M. Edelstein, M.F. Reid and J. Huang, J. Alloys and Comp. 374, 240 (2004)

    CAS  Article  Google Scholar 

  17. 17

    E. Cohen and H.W. Moos, Phys.Rev. 161, 258 (1967)

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, W., Zhang, H. & Liu, G. Orbital Hybridization in Uranium Compounds and its Influence on Electronic Properties. MRS Online Proceedings Library 1104, 408 (2008). https://doi.org/10.1557/PROC-1104-NN04-08

Download citation