Influence of Radiation Damage and Isochronal Annealing on the Magnetic Susceptibility of Pu1-xAmx Alloys

Abstract

Results of radiation damage in Pu and Pu1-xAmx alloys studied with magnetic susceptibility, χ(T), and resistivity are presented. Damage accumulated at low temperatures increases χ(T) for all measured alloys, with the trend generally enhanced as the lattice expands. There is a trend towards saturation observable in the damage induced magnetic susceptibility data. that is not evident in similar damage induced resistivity data taken on the same specimen. A comparison of isochronal annealing curves measured by both resistivity and magnetic susceptibility on a 4.3at% Ga stabilized δ-Pu specimen show that Stage I annealing, where interstitials begin to move, is largely transparent to the magnetic measurement. This indicates that interstitials have little impact on the damage induced increase in the magnetic susceptibility. The isochronal annealing curves of the Pu1-xAmx alloys do not show distinct annealing stages as expected for alloys. However, samples near 20% Am concentration show an unexpected increase in magnetization beginning when specimens are annealed to 35K. This behavior is also reflected in a time dependent increase in the magnetic susceptibility of damaged specimens indicative of first order kinetics. These results suggest there may be a metastable phase induced by radiation damage and annealing in Pu1-xAmx alloys.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    B. Kanellakopulos, et al., Sol St Comm 17, 713 (1975).

    CAS  Article  Google Scholar 

  2. [2]

    A. Kubota, et al., Journal of Computer-Aided Materials Design 14, 367 (2007).

    CAS  Article  Google Scholar 

  3. [3]

    S. K. McCall, et al., Proc. Natl. Acad. Sci. U. S. A. 103, 17179 (2006).

    CAS  Article  Google Scholar 

  4. [4]

    J. C. Lashley, et al., JOM-Journal of the Minerals Metals & Materials Society 55, 34 (2003).

  5. [5]

    R. J. Trainor, M. B. Brodsky, and H. V. Culbert, Phys. Rev. Lett. 34, 1019 (1975).

    CAS  Article  Google Scholar 

  6. [6]

    J. C. Lashley, et al., Phys. Rev. B 72, 054416 (2005).

    Article  Google Scholar 

  7. [7]

    S. K. McCall, et al., J. Alloys Compd. 444–445, 168 (2007).

    CAS  Article  Google Scholar 

  8. [8]

    M. J. Fluss, et al., J. Alloys Compd. 368, 62 (2004).

  9. [9]

    S. K. McCall, et al., in Materials Research Society Fall Meeting 2006, edited by K. J. M. Blobaum, Boston MA, 2007), Vol. 986, p. 0986.

  10. [10]

    L. J. van der Pauw, Philips Technical Review 20, 220 (1958).

    Google Scholar 

  11. [11]

    D. A. Wigley, Proc. R. Soc. London, A 284, 344 (1965).

    Article  Google Scholar 

  12. [12]

    E. Yagi, et al., Phys. Rev. B 38, 3189 (1988).

    CAS  Article  Google Scholar 

  13. [13]

    P. Soderlind and B. Sadigh, Phys. Rev. Lett. 92, 185702 (2004).

    Article  Google Scholar 

  14. [14]

    P. Soderlind, A. Landa, and B. Sadigh, Phys. Rev. B 66, 205109 (2002).

    Article  Google Scholar 

  15. [15]

    S. Y. Savrasov and G. Kotliar, Phys. Rev. Lett. 84, 3670 (2000).

    CAS  Article  Google Scholar 

  16. [16]

    S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nature 410, 793 (2001).

    CAS  Article  Google Scholar 

  17. [17]

    J. Bouchet, et al., J. Phys.: Condens. Matter 12, 1723 (2000).

    CAS  Google Scholar 

  18. [18]

    A. O. Shorikov, et al., Phys. Rev. B 72, 024458 (2005).

    Article  Google Scholar 

  19. [19]

    A. B. Shick, V. Drchal, and L. Havela, Europhys. Lett. 69, 588 (2005).

    CAS  Article  Google Scholar 

  20. [20]

    R. H. Heffner, et al., Phys. Rev. B 73, 094453 (2006).

    Article  Google Scholar 

  21. [21]

    J. C. Lashley, et al., Phys. Rev. Lett. 91, 205901/1 (2003).

    CAS  Article  Google Scholar 

  22. [22]

    A. M. Clogston, et al., Physical Review 125, 541 (1962).

    CAS  Article  Google Scholar 

  23. [23]

    R. M. Bozorth, et al., Physical Review 122, 1157 (1961).

    CAS  Article  Google Scholar 

  24. [24]

    H. H. Hill, et al., Physica 55, 615 (1971).

    CAS  Article  Google Scholar 

  25. [25]

    P. Mendels, et al., Europhys. Lett. 46, 678 (1999).

    CAS  Article  Google Scholar 

  26. [26]

    J. Bobroff, et al., Phys. Rev. Lett. 83, 4381 (1999).

    CAS  Article  Google Scholar 

  27. [27]

    F. Rullier-Albenque, H. Alloul, and R. Tourbot, Phys. Rev. Lett. 91, 047001 (2003).

    CAS  Article  Google Scholar 

  28. [28]

    T. Diaz de la Rubia, et al., Journal of Computer-Aided Materials Design 5, 243 (1998).

    Article  Google Scholar 

  29. [29]

    J. A. Lee, K. Mendelssohn, and D. A. Wigley, Phys. Lett. A 1, 325 (1962).

    CAS  Article  Google Scholar 

  30. [30]

    M. J. Mortimer, J. A. C. Marples, and J. A. Lee, Int. Met. Rev. 20, 109 (1975).

    CAS  Article  Google Scholar 

  31. [31]

    R. O. Elliott, C. E. Olsen, and G. H. Vineyard, Acta Metal. 11, 1129 (1963).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott K. McCall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McCall, S.K., Fluss, M.J., Chung, B.W. et al. Influence of Radiation Damage and Isochronal Annealing on the Magnetic Susceptibility of Pu1-xAmx Alloys. MRS Online Proceedings Library 1104, 105 (2008). https://doi.org/10.1557/PROC-1104-NN01-05

Download citation