Phosphorus Diffusion in Polycrystalline Silicon: Monte Carlo Simulation of Experimental Diffusion Profiles

Abstract

Phosphorus ions were implanted into silicon layers deposited by low pressure chemical vapor deposition onto thermally oxidized silicon substrates. Thermal anneals diffused the phosphorus and the resulting depth profiles were determined by secondary-ion mass spectrometry (SIMS). Transmission electron microscopy shows that the polysilicon layers have a multi-layer pattern of grains. The phosphorus profiles are fit by a Monte Carlo simulation technique that includes both grain and grain-boundary diffusion. The grain-boundary diffusion coefficient is found to be thermally activated with an activation energy of 3.3 eV.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Sunaml, J. Electrochem. Soc. 125, 892 (1978).

    Article  Google Scholar 

  2. 2.

    J. Götzlich and H. Ryssel, J. Electrochem. Soc. 128, 617 (1981).

    Article  Google Scholar 

  3. 3.

    G.L. Patton, J.c. Bravman, and J.D. Plummer, IEEE Trans. Electron Dev. ED-33, 1754 (1986).

  4. 4.

    H.F. Mataré, J. Appl. Phys. 56, 2605 (1984).

    Article  Google Scholar 

  5. 5.

    C.R.M. Grovenor, J. Phys. C 18, 4079 (1985).

    CAS  Article  Google Scholar 

  6. 6.

    G. Lubberts, B.C. Burkey, F. Moser, and E.A. Trabka, J. Appl. Phys. 52, 6870 (1981).

    CAS  Article  Google Scholar 

  7. 7.

    D.L. Losee, J.P. Lavine, E.A. Trabka, S.-T. Lee, and C.M. Jarman, J. Appl. Phys. 55, 1218 (1984).

    CAS  Article  Google Scholar 

  8. 8.

    D.L. Black, J.P. Lavine, S.-T. Lee, and D.L. Losee, in Microscopy of Semiconducting Materials, edited by A.G. Cullis and D.B. Holt (Institute of Physics, Bristol, 1985), pp. 157–162.

  9. 9.

    H. Oppolzer, R. Falckenberg, and E. Doering, in Microscopy of Semiconducting Materials, edited by A.G. Cullis and D.C. Joy (Institute of Physics, Bristol, 1981), pp. 283–288.

  10. 10.

    J.P. Lavine, J. Appl. Phys. 59, 1986 (1986).

    Article  Google Scholar 

  11. 11.

    W.W. Brandt, J. Chem. Phys. 59, 5562 (1973).

    CAS  Article  Google Scholar 

  12. 12.

    G.E. Murch and S.J. Rothman, Diffus. Defect Data 42, 17 (1985).

    CAS  Article  Google Scholar 

  13. 13.

    P. Metsch, F.H.M. Spit, and H. Bakker, Phys. Status Solidi a93, 543 (1986).

  14. 14.

    P. Benoist and G. Martin, Thin Solid Films 25, 181 (1975).

    CAS  Article  Google Scholar 

  15. 15.

    J.F. Gibbons, W.S. Johnson, and S.W. Mylroie, in Projected Range Statistics in Semiconductors and Related Materials, 2nd ed. (Dowden, Hutchinson, and Ross, Stroudsburg, PA, 1975).

  16. 16.

    T.I. Kamins, J. Manoliu, and R. N. Tucker, J. Appl. Phys. 43, 83 (1972).

    CAS  Article  Google Scholar 

  17. 17.

    H. Baumgart, H.J. Leamy, L.E. Trimble, C.J. Doherty, and G.K. Celler, in Grain Boundaries in Semiconductors, edited by H.J. Leamy, G.E. Pike, and C.H. Seager (Elsevier Science Publishing, New York, 1982), pp. 311–316.

  18. 18.

    R. Hezel, Siemens Forsch. Entwicklungsber. 3, 160 (1974).

    CAS  Google Scholar 

  19. 19.

    F.H.M. Spit and H. Bakker, Phys. Status Solidi a97, 135 (1986).

  20. 20.

    J.L. Liotard, R. Bibérian, and J. Cabané, J. Physique 43(C1), 213 (1982).

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lavine, J.P., Lee, S.T., Black, D.L. et al. Phosphorus Diffusion in Polycrystalline Silicon: Monte Carlo Simulation of Experimental Diffusion Profiles. MRS Online Proceedings Library 106, 39 (1987). https://doi.org/10.1557/PROC-106-39

Download citation