Skip to main content
Log in

Electrostatic-Directed Deposition of Nanoparticles on a Field Generating Substrate

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

In this paper we develop a Brownian dynamics model applied to position metal nanoparticles from the gas phase onto electrostatic-patterns generated by biasing P-N junction substrates. Brownian motion and fluid convection of nanoparticles, as well as the interactions between the charged nanoparticles and the patterned substrate, including electrostatic force, image force and van der Waals force, are accounted for in the simulation. Using both experiment and simulation we have investigated the effects of the particle size, electric field intensity, and the convective flow on coverage selectivity. Coverage selectivity is most sensitive to electric field, which is controlled by the applied reverse bias voltage across the p-n junction. A non-dimensional analysis of the competition between the electrostatic and diffusion force is found to provide a means to collapse a wide range of process operating conditions and an effective indicator or process performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. E. Kruis ; H. Fissan ; A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - A review. Journal of Aerosol Science 1998, 29, (5-6), 511–535.

    Article  CAS  Google Scholar 

  2. K. H. Su ; Q. H. Wei ; X. Zhang ; J. J. Mock ; D. R. Smith ; S. Schultz, Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Letters 2003, 3, (8), 1087–1090.

    Article  CAS  Google Scholar 

  3. C. R. Barry ; M. G. Steward ; N. Z. Lwin ; H. O. Jacobs, Printing nanoparticles from the liquid and gas phases using nanoxerography. Nanotechnology 2003, 14, (10), 1057–1063.

    Article  CAS  Google Scholar 

  4. H. O. Jacobs ; S. A. Campbell ; M. G. Steward, Approaching nanoxerography: The use of electrostatic forces to position nanoparticles with 100 nm scale resolution. Advanced Materials 2002, 14, (21), 1553-+.

    Article  CAS  Google Scholar 

  5. T. J. Krinke ; K. Deppert ; M. H. Magnusson ; H. Fissan, Nanostructured deposition of nanoparticles from the gas phase. Particle & Particle Systems Characterization 2002, 19, (5), 321–326.

    Article  CAS  Google Scholar 

  6. D. H. Tsai ; S. H. Kim ; T. D. Corrigan ; R. J. Phaneuf ; M. R. Zachariah, Electrostatic-directed deposition of nanoparticles on a field generating substrate. Nanotechnology 2005, 16, (9), 1856–1862.

    Article  CAS  Google Scholar 

  7. T. J. Krinke ; K. Deppert ; M. H. Magnusson ; F. Schmidt ; H. Fissan, Microscopic aspects of the deposition of nanoparticles from the gas phase. Journal of Aerosol Science 2002, 33, (10), 1341–1359.

    Article  CAS  Google Scholar 

  8. H. Schlichting, Boundary-Layer Theory. 7th ed.; McGraw Hill: 1979.

    Google Scholar 

  9. H. C. Kan ; R. J. Phaneuf, Focusing of low energy electrons by submicrometer patterned structures in low energy electron microscopy. Journal of Vacuum Science & Technology B-an International Journal Devoted to Microelectronics and Nanometer Structures-Processing Measurement and Phenomena 2001, 19, (4), 1158–1163.

    CAS  Google Scholar 

  10. D. L. Ermak ; H. Buckholz, Numerical-Integration of the Langevin Equation - Monte-Carlo Simulation. Journal of Computational Physics 1980, 35, (2), 169–182.

    Article  Google Scholar 

  11. H. Park ; S. Kim ; H. S. Chang, Brownian dynamic simulation for the aggregation of charged particles. Journal of Aerosol Science 2001, 32, (11), 1369–1388.

    Article  CAS  Google Scholar 

  12. W. C. Hind, Aerosol Technology, 2nd edition. 1998.

  13. R. J. Phaneuf ; H. C. Kan ; M. Marsi ; L. Gregoratti ; S. Gunther ; M. Kiskinova, Imaging the variation in band bending across a silicon pn junction surface using spectromicroscopy. Journal of Applied Physics 2000, 88, (2), 863–868.

    Article  CAS  Google Scholar 

  14. D.-H. Tsai, T. Hawa, H-C Kan, R. J. Phaneuf, M. R. Zachariah, “Spatial and Size-Resolved Electrostatic-Directed Deposition of Nanoparticles on a Field-Generating Substrate: Theoretical and Experimental Analysis”, Nanotechnology, 18 (36), 365201, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, DH., Hawa, T., Kan, HC. et al. Electrostatic-Directed Deposition of Nanoparticles on a Field Generating Substrate. MRS Online Proceedings Library 1059, 1203 (2007). https://doi.org/10.1557/PROC-1059-KK12-03

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1059-KK12-03

Navigation