Nanopattern Formation by Periodic Array of Interfacial Misfit Dislocations in Bi(111)/Si(001) Heteroepitaxy


Despite their large lattice mismatch of 18 %, the lattices of Bi(111) and Si(001) fit surprisingly well. A remaining compressive strain in the Bi film of 2.3 % along the direction is accommodated by the formation of a periodic array of edge-type misfit dislocations confined to the interface. The strain fields surrounding each dislocation interact with each other, producing a quasi-periodic nanopattern of grating-like periodic height undulations on the surface. The separation and the amplitude of the height undulations have been derived by spot profile analyzing LEED and STM surface height profiles. The observed undulations agree well with elasticity theory.

This is a preview of subscription content, access via your institution.


  1. 1.

    G. E Smith, G. A Baraff, and J. M Rowell, Phys. Rev. 135, A1118 (1964).

    Article  Google Scholar 

  2. 2.

    Ph. Hofmann, Prog. Surf. Sci. 81, 191 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    D. H Reneker, Phys. Rev. Lett. 1, 440 (1958).

    CAS  Article  Google Scholar 

  4. 4.

    Y. F Komnik, E. I Bukhshtab, Y. V Nikitin, and V. V Andrievskii, Sov. Phys. JETP 33, 364 (1971).

    Google Scholar 

  5. 5.

    N. Garcia, Y. H Kao, and M. Strongin, Phys. Rev. B 5, 2029 (1972).

    Article  Google Scholar 

  6. 6.

    M. Lu, R. J Zieve, A. van Hulst, H. M Jaeger, T. F Rosenbaum, and S. Radelaar, Phys. Rev. B 53, 1609 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    F. Y Yang, K. Liu, K. Hong, D. H Reich, P. C Searson, and C. L Chien, Science 284, 1335 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    M. Horn-von-Hoegen, A. Al-Falou, H. Pietsch, B. H. Müller, and M. Henzler, Surf. Sci. 298, 29 (1993).

    CAS  Article  Google Scholar 

  9. 9.

    B. Voigtländer, and N. Theuerkauf, Surf. Sci. 461, L575 (2000).

    Article  Google Scholar 

  10. 10.

    M. Horn-von Hoegen, T. Schmidt, G. Meyer, D. Winau and K.H. Rieder, Phys. Rev. B 52, 10764 (1995).

    Article  Google Scholar 

  11. 11.

    H. Brune, M. Giovannini, K. Bromann, and K. Kern, Nature 394, 451 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    D. D Chambliss, R. J Wilson, S. Chiang, Phys. Rev. Lett. 66, 1721 (1991).

    CAS  Article  Google Scholar 

  13. 13.

    M. Horn-von Hoegen, Z. Krist . 214 591 and 684 (1999).

  14. 14.

    G. Jnawali, H. Hattab, B. Krenzer, and M. Horn-von Hoegen, Phys. Rev. B 74, 195340 (2006).

    Article  Google Scholar 

  15. 15.

    G. Jnawali, H. Hattab, F.-J. Meyer zu Heringdorf, B. Krenzer, and M. Horn-von Hoegen, Phys. Rev. B 76, 035337 (2007).

    Article  Google Scholar 

  16. 16.

    G. Springholz, Appl. Surf. Sci. 112, 12 (1997).

    CAS  Article  Google Scholar 

  17. 17.

    S. N Filimonov, V. Cherepanov, N. Paul, H. Asaoka, J. Brona and B. Voigtländer, Surf. Sci. 599, 76 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    C. Bobisch, A. Bannani, M. Matena, and R. Möller, Nanotechnology 18, 055606 (2007).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G. Jnawali.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jnawali, G., Hattab, H., Bobisch, C. et al. Nanopattern Formation by Periodic Array of Interfacial Misfit Dislocations in Bi(111)/Si(001) Heteroepitaxy. MRS Online Proceedings Library 1059, 707 (2007).

Download citation