Abstract
Thin films of polyaniline (PANI) deposited onto different substrates were nano-structured using direct laser interference patterning (DLIP) at room temperature and pressure in air atmosphere. Regular line-like arrays with thicknesses up to 600 nm were fabricated by means of this technique in only one single step. The activity of the remained polyaniline was determined by monitoring its doping level using Energy Dispersive X-Ray Analysis (EDX), while its chemical structure was confirmed by Fourier Transform Infrared Spectroscopy using Attenuated Transmission Reflectance (FTIR-ATR). The structuring mechanisms of PANI supported in both polycarbonate (PC) and polyimide (PI) films were demonstrated using cross-sectional analyses performed with a dual-beam workstation (FIB/SEM Tomography). Moreover, by varying the fluence of the laser beam, it is possible to control the width of the PANI arrays, and large areas (mm2 - cm2) could be patterned. Additionally, electrical resistance measurements of the individual PANI strips demonstrated that electrical properties of unmodified regions remain unchanged.
This is a preview of subscription content, access via your institution.
References
- 1.
H. Evans, in Advances in Electrochemical Science and Engineering, Vol. 1, (Eds: Gerischer, C.W. Tobias), VCH Verlagsgesselshaft, Weinheim, Germany, 1990, Chap. 1.
- 2.
A. G. MacDiarmid, S. L. Mu, N. L. D. Somasiri, W. Wu, Mol. Cryst. Liq. Cryst.121, 187 (1985).10.1080/00268948508074859
- 3.
C. D. Batich, H. A. Laitinen, H. C. Zhou, J. Electrochem. Soc. 137, 883 (1990).10.1149/1.2086572
- 4.
Y. H. Dong, S. L. Mu, Electrochim. Acta. 36, 2015 (1991).
- 5.
P. N. Bartlett, R.G. Whitaker, Biosensor. 3, 359 (1987).10.1016/0265-928X(87)80018-4
- 6.
A. C. Barton, S. D. Collyer, F. Davis, D. D. Gornall, K. A. Law, E. C. D. Lawrence, D. W. Mills, S. Myler, J. A. Pritchard, M. Thompsonc, S. P.J. Higson, Biosensors and Bioelectronics. 20, 328 (2004).10.1016/j.bios.2004.02.002
- 7.
C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, D. M. de Leeuw, Appl. Phys. Lett. 73, 108 (1998).10.1063/1.121783
- 8.
M. Angelopoulos, J. M. Shaw, K. L. Lee, W. S. Huang, M.A. Lecorre, M. Tisier, J. Vac. Sci. Technol. B9, 3428 (1991).10.1116/1.585816
- 9.
E. A. Chandross, F. M. Houlihan, A. Partovi, X. S. W. Quan, G. Venugopal, U.S. Patent 6, 45, 977 (2000).
- 10.
M. Angelopoulos. J. D. Gelorme, H. Y. Liao, J. M. Shaw, U. S. Patent, 6193909 B1 (2001).
- 11.
H. J. Salavagione; M. C. Miras; C. Barbero; J. Am. Chem. Soc. 125, 5290 (2003).10.1021/ja0298693
- 12.
H. J. Salvagione, M.C. Miras, C.A. Barbero, Macromol. Rapid. Comm., 27, 26 (2006).10.1002/marc.200500653
- 13.
F. Mücklich, A. Lasagni, C. Daniel, Intermetallics. 13, 437 (2005).10.1016/j.intermet.2004.07.005
- 14.
M. Kelly, J. Rogg, C. Nebel, M. Stutzmann, Sz. Kàtai, Phys. Stat. Sol. 166, 651 (1998)10.1002/(SICI)1521-396X(199804)166:2<651::AID-PSSA651>3.0.CO;2-P
- 15.
F. Yu, P. Li, H. Shen, S. Mathur, C.M. Lehr, U. Bokowsky, F. Mücklich, Biomat. 26, 2307 (2005).10.1016/j.biomaterials.2004.07.021
- 16.
D. F. Acevedo, M. C. Miras, C. A. Barbero in Combinatorial Synthesis and Screening of Photochromic Dyes and Modified Conducting Polymers. (Eds. R.v A Potyrailo W. F. Maier), CRC Press, New York, USA, Chap. 13 (2006).
- 17.
D. Bäuerle in Laser processing and chemistry, 2nd edition, Springer Verlag, Berlin (1996).10.1007/978-3-662-03253-4
- 18.
D. Acevedo, A. Lasagni, C. Barbero, F. Mücklich, Adv. Mater. 19, 1272 (2007).10.1002/adma.200601693
- 19.
D. F. Acevedo, M. C. Miras, C.A. Barbero, J. Comb.Chem. 7, 513 (2005).10.1021/cc049810n
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lasagni, A., Acevedo, D., Barbero, C. et al. Fabrication of Conductive Polymeric Arrays using Direct Laser Interference micro/nano Patterning. MRS Online Proceedings Library 1030, 601 (2007). https://doi.org/10.1557/PROC-1030-G06-01
Received:
Accepted:
Published: