Mechanical Behavior of Functional Hybrid Coating Based on Anisotropic Iron Oxide Nanoparticles

Abstract

Functional hybrid coatings have been elaborated from a polymer matrix incorporating iron oxide nanoparticles. Stable aqueous suspensions of goethite (α-FeOOH) nanorods, obtained by controlled precipitation of Fe3+ ions, were introduced in 2-hydroxyethyl methacrylate (HEMA). The films were spin-coated on glass substrates from the solutions prior to a UV light induced free radical polymerization step. Nanoindentation tests were carried out to investigate the mechanical properties of the hybrid coatings. Swelling measurements and Fourier Transformed Infrared Spectroscopy (FTIR) were used to characterize the interface between the iron oxide nanoparticles and the PHEMA matrix. Cross-sectional scanning electron microscopy (SEM) and transmission electron microscopy (TEM) was performed to evaluate the dispersion state of the iron oxide particles through the matrix. From a mechanical point of view, iron oxide nanorods yield to a strong reinforcement effect of PHEMA (increase in modulus and hardness by a factor 2 with 5%vol goethite nanoparticles). Origins of such reinforcement are attributed to the existence of highly favourable interactions at the goethite-PHEMA interface combined with a homogeneous dispersion of the particles. The nature of these interactions and evidences of there influence on the mechanical behaviour of the nanohybrid coatings are reported.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    C. Sanchez, B. Julian, P. Belleville, and M. Popall, Journal of Materials Chemistry, 15(2005), 3559–3592.

    CAS  Article  Google Scholar 

  2. [2]

    M.L. Zheludkevich, I. Miranda Salvado, and M.G.S. Ferreira, Journal of Materials Chemistry, 15(2005), 5099–5111.

    CAS  Article  Google Scholar 

  3. [3]

    F. Mammeri, E. Le Bourhis, L. Rozes, and C. Sanchez, Journal of Materials Chemistry, 15(2005), 3787–3811.

    CAS  Article  Google Scholar 

  4. [4]

    K.C. Krogman, T. Druffel, and M.K. Sunkara, Nanotechnology 16 (2005) S338–S343.

    Article  Google Scholar 

  5. [5]

    S. Takahashi, H.A. Goldberg, C.A. Feeney, D.P. Karim, M. Farrell, K. O’Leary, and D.R. Paul, Polymer 47 (2006) 3083–3093.

    CAS  Article  Google Scholar 

  6. [6]

    E. Barna, B. Bommer, J. Kursteiner, A. Vital, O.V. Trzebiatowski, W. Koch, B. Schmid, and T. Graule, Composites: Part A 36 (2005) 473–480.

    Article  Google Scholar 

  7. [7]

    J. Gass, P. Poddar, J. Almand, S. Srinath, and H. Srikanth, Advanced Functional Materials, 16 (2006), 71–75.

    CAS  Article  Google Scholar 

  8. [8]

    I. Pastoriza-Santos, J. Perez-Juste, G. Kickelbick, L.M. Liz-Marzan, Journal of Nanoscience and Nanotechnology 6 (2006), 453–458.

    CAS  Article  Google Scholar 

  9. [9]

    J.W. Rhim, S.I. Hong, H.M. Park, P.K.W. Ng, Journal of Agricultural and Food Chemistry, 54 (2006), 5814–5822.

    CAS  Article  Google Scholar 

  10. [10]

    R.M. Cornell, U. Schertmann, The iron oxides: Structure, Properties, Reactions, Occurrence and Uses; VCH Publishers: Weinheim, 1996.

    Google Scholar 

  11. [11]

    J.P. Jolivet, E. Tronc, C. Chanéac, Chemical Communications 2004, 481–487.

  12. [12]

    M. Ullmann, S.K. Friedlander, A. Schmidt-Ott, Journal of Nanoparticle Research, 4 (2002), 499–509.

    CAS  Article  Google Scholar 

  13. [13]

    R. Tannenbaum, M. Zubris, E. P. Goldberg, S. Reich, N. Dan, Macromolecules, 38 (2005), 4254–4259.

    CAS  Article  Google Scholar 

  14. [14]

    P. Dallas, V. Georgakilas, D. Niarchos, Nanotechnology 17 (2006), 2046–2053.

    CAS  Article  Google Scholar 

  15. [15]

    C. Baker, S. Ismat Shah, S.K. Hasanain, Journal of Magnetism and Magnetic Materials, 280 (2004), 412–418.

    CAS  Article  Google Scholar 

  16. [16]

    R.J. Atkinson, A. M. Posner, and J. P. Quirk, Journal of Physic Chemistry, 71 (1967), 550.

    CAS  Article  Google Scholar 

  17. [17]

    W.C. Oliver and G.M. Pharr, Journal of Material Research 7 (1992), 1564

    CAS  Article  Google Scholar 

  18. [18]

    J. Berriot, H. Montes, F. Lequeux, L. Monnerie, D. Long, P. Sotta, Journal of Non-Crystalline Solids, 307–310 (2002), 719–724.

    Article  Google Scholar 

  19. [19]

    D. Ciprari, K. Jacob, R. Tannenbaum, Macromolecules, 39, (2006) 6565–6573.

    CAS  Article  Google Scholar 

  20. [20]

    E. H. Tadd, A. D. Zeno, M. Zubris, N. Dan, R. Tannenbaum, Macromolecules, 36, (2003), 6497–6502.

    CAS  Article  Google Scholar 

  21. [21]

    L.A. Harris, J.D. Goff, A.Y. Carmichael, J.S. Riffle, J.J. Harburn, T.G. St. Pierre, M. Saunders, Chemistry of Materials, 15, (2003), 1367.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicolas Chemin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chemin, N., Rozes, L., Chanéac, C. et al. Mechanical Behavior of Functional Hybrid Coating Based on Anisotropic Iron Oxide Nanoparticles. MRS Online Proceedings Library 1007, 1509 (2007). https://doi.org/10.1557/PROC-1007-S15-09

Download citation