Fabrication of Fluorescent Cellular Probes: Hybrid Dendrimer/Gold Nanoclusters

Abstract

Fluorescent metal nanoclusters, which consist of collections of small numbers of noble metal atoms, are of great interest in photochemistry and photophysics due to their strong size-dependent emission. Historically their generation was confined to gaseous and solid phases; however, recently a unique organic/inorganic hybrid materials approach was developed that utilizes dendrimers as templates to protect nanoclusters from solution based fluorescence quenching. These hybrid dendrimer/gold nanoclusters are water-soluble and highly fluorescent. Yet there are several intrinsic deficiencies in their synthetic method: first, NaBH4, a toxic chemical, was used as reducing agent in the reaction; and second, the reaction yield was low due to the concurrent formation of large, non-emissive, gold particles. Here we report a particle-free method to produce dendrimer-encapsulated gold nanoclusters in high-yield. Proof of concept is demonstrated using OH-terminated poly(amidoamine) dendrimer and Au(PX3)3Cl (X = Ph, Me), but the approach can also be extended to the combination of other dendrimers and organic noble metal salts. Our approach yields fluorescent clusters with homogeneous size distribution. These clusters can be transferred to aqueous solution and used directly for biological applications.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Alivisatos, Nat. Biotechnol. 22 (1), 47 (2004); M. Bruchez, M. Moronne, P. Gin et al., Science 281 (5385), 2013 (1998); P. V. Kamat, J. Phys. Chem. B 106 (32), 7729 (2002); G. D. Liu, T. M. H. Lee, and J. S. Wang, J. Am. Chem. Soc. 127 (1), 38 (2005); C. A. Mirkin, Inorg. Chem. 39 (11), 2258 (2000).

    CAS  Article  Google Scholar 

  2. 2.

    A. P. Alivisatos, W. W. Gu, and C. Larabell, Annu. Rev. Biomed. Eng. 7, 55 (2005); J. K. Jaiswal and S. M. Simon, Trends Cell Biol. 14 (9), 497 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    M. A. El-Sayed, Acc. Chem. Res. 34 (4), 257 (2001); S. Empedocles and M. Bawendi, Acc. Chem. Res. 32 (5), 389 (1999).

    CAS  Article  Google Scholar 

  4. 4.

    G. A. Ozin and S. A. Mitchell, Angew. Chem. Int. Ed. 22 (9), 674 (1983); R. M. Crooks, M. Zhao, L. Sun et al., Acc. Chem. Res. 34 (3), 181 (2001); Jun Li, Xi Li, Hua-Jin Zhai et al., Science 299 (5608), 864 (2003); J. G. Zhang, S. Q. Xu, and E. Kumacheva, Adv. Mater. 17 (19), 2336 (2005).

    Article  Google Scholar 

  5. 5.

    R. C. Jin, S. Egusa, and N. F. Scherer, J. Am. Chem. Soc. 126 (32), 9900 (2004); Y. Negishi and T. Tsukuda, Chem. Phys. Lett. 383 (1-2), 161 (2004); J. P. Wilcoxon, J. E. Martin, F. Parsapour et al., J. Chem. Phys. 108 (21), 9137 (1998); S. Link, A. Beeby, S. Fitzgerald et al., J. Phys. Chem. B 106 (13), 3410 (2002); Y. Negishi, Y. Takasugi, S. Sato et al., J. Am. Chem. Soc. 126 (21), 6518 (2004); M. F. Bertino, Z. M. Sun, R. Zhang et al., J. Phys. Chem. B 110 (43), 21416 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    J. Zheng, J. T. Petty, and R. M. Dickson, J. Am. Chem. Soc. 125 (26), 7780 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    J. Zheng, C. W. Zhang, and R. M. Dickson, Phys. Rev. Lett. 93 (7), 077402 (2004).

    Article  Google Scholar 

  8. 8.

    R. C. Triulzi, M. Micic, S. Giordani et al., Chem. Commun. (48), 5068 (2006).

    Google Scholar 

  9. 9.

    Y. Bao, C. Zhong, D. Vu et al., J. Phys. Chem. C, submitted (2007).

  10. 10.

    M. L. Tran, A. V. Zvyagin, and T. Plakhotnik, Chem. Commun. (22), 2400 (2006).

    Google Scholar 

  11. 11.

    D. J. Wang and T. Imae, J. Am. Chem. Soc. 126 (41), 13204 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    M. Q. Zhao, L. Sun, and R. M. Crooks, J. Am. Chem. Soc. 120 (19), 4877 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    Y. Shichibu, Y. Negishi, T. Tsukuda et al., J. Am. Chem. Soc. 127 (39), 13464 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    M. Quinn and G. Mills, J. Phys. Chem. 98 (39), 9840 (1994); K. Esumi, T. Hosoya, A. Suzuki et al., Langmuir 16 (6), 2978 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    D. Schonauer, H. Lauer, and U. Kreibig, Zeitschrift fur Physik D (Atoms, Molecules and Clusters) 20 (1/4), 301 (1991).

    Article  Google Scholar 

  16. 16.

    W. M. Pankau, K. Verbist, and G. von Kiedrowski, Chem. Commun. (6), 519 (2001).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chang Zhong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhong, C., Bao, Y., Vu, D.M. et al. Fabrication of Fluorescent Cellular Probes: Hybrid Dendrimer/Gold Nanoclusters. MRS Online Proceedings Library 1007, 1507 (2007). https://doi.org/10.1557/PROC-1007-S15-07

Download citation