Nanosecond Resolved Temperature Measurements Following Pulsed Laser Irradiation

Abstract

A transient resistance technique has been developed which allows monitoring the temperature of a thin film sample at a fixed depth from the surface following pulsed laser irradiation. The technique utilizes the temperature dependence of a thin, electrically insulated, semiconducting or metallic layer. Temperature determinations with nanosecond resolution, an absolute accuracy of ±50 K, and a relative accuracy of ±5 K are demonstrated. Combined with simultaneous interface position and velocity measurements, the undercooling at the interface during rapid solidification may be obtained. Preliminary results using this technique during the solidification of thin Ge films are presented.

This is a preview of subscription content, access via your institution.

References

  1. 1

    For a review of the recent literature, see other volumes in this series, Mat. Res. Soc. Symp. Proc. 35, 51, 74 (1984–87)

  2. 2

    see, for example J.Y. Tsao, P.S. Peercy and Michael O. Thompson, J. Mater. Res. 2, 91 (1987).

    CAS  Article  Google Scholar 

  3. 3

    J.J. Broughton and F.F. Abraham, J. Cryst. Growth 75, 613 (1986).

    CAS  Article  Google Scholar 

  4. 4

    Alvin Compaan, J. Mat. Res. Soc. Proc. 35, 65 (1985)

    CAS  Article  Google Scholar 

  5. 5

    B.C. Larson, C.W. White, T.S. Noggle, J.F. Barhorst and D.M. Mills, Appl. Phys. Lett. 42, 282 (1983).

    CAS  Article  Google Scholar 

  6. 6

    M.O. Lampert, J.M. Koebel and P. Siffert, J. Appl. Phys. 52, 4975 (1981).

    CAS  Article  Google Scholar 

  7. 7

    A.M. Malvezzi, H. Kruz and N. Bloembergen, J. Mat. Res. Soc. Proc. 35, 75 (1985)

    CAS  Article  Google Scholar 

  8. 8

    A. Compaan and H.J. Trodahl, Phys. Rev. Β 29, 793 (1984).

    CAS  Article  Google Scholar 

  9. 9

    D. Von der Linde, Ν. Fabricius, Β. Danielzik and T. Bonkhofer, J. Mat. Res. Soc. Proc. 74, 103 (1987).

    Article  Google Scholar 

  10. 10

    P. Baeri, S.U. Campisano, E. Rimini and Jing Ping Zhang, Appl. Phys. Lett. 45, 398 (1984).

    CAS  Article  Google Scholar 

  11. 11

    G.J. Galvin, M.O. Thompson, J.W. Mayer, R.B. Hammond, N. Paulter and P.S. Peercy, Phys. Rev. Lett. 48, 33 (1982); Michael O. Thompson, G.J. Galvin, J.W. Mayer, P.S. Peercy and R.B. Hammond, Appl. Phys. Lett. 42, 445 (1983).

    CAS  Article  Google Scholar 

  12. 12

    CRC Handbook of Chemistry and Physics, (CRC Press, Florida, 1984), p. F-133.

  13. 13

    C.D. Thurmond, J. Electrochem. Soc. 122, 1133 (1975).

    CAS  Article  Google Scholar 

  14. 14

    C. Jacoboni, C. Canali, G. Ottaviani and A. Alberigi Quaranta, Solid-State Electronics 20, 77 (1977).

    Article  Google Scholar 

  15. 15

    E.H. Putley and W.H. Mitchell, Proc. Phys. Soc. (London) A72, 193 (1958).

    Article  Google Scholar 

  16. 16

    Progress in Semiconductors, A.F. Gibson, ed., (Heywood & Company, London, 1960), p. 259.

    Google Scholar 

  17. 17

    V.M. Glazov, S.N. Chizhevskaya and N.N. Glagoleva, Liquid Semiconductors, (Plenum Press, New York, 1969), chap. 3.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael O. Thompson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thompson, M.O. Nanosecond Resolved Temperature Measurements Following Pulsed Laser Irradiation. MRS Online Proceedings Library 100, 525 (1987). https://doi.org/10.1557/PROC-100-525

Download citation