Picosecond Laser Induced Melting: The Dielectric Function of Molten Silicon and Superheating in the Liquid Phase

Abstract

The complex dielectric function of molten silicon produced after picosecond illumination is found to be well described by a Drude model from 1.1 eV to 3.5 eV. Close to the melting temperature, we obtain ωp = 2.50 1016rad/s and τ = 212 10−18s. Transiently, the liquid temperature can exceed the melting temperature or even the boiling temperature Tb. We observe this transient heating and model it with a relatively simple computer code which includes superheating of the liquid above Tb. These measurements are possible thanks to a novel pump and probe technique.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P.M. Fauchet and A.E. Siegman, Appl. Phys. Lett. 43, 1043 (1983).

    CAS  Article  Google Scholar 

  2. 2.

    P.M. Fauchet and A.E. Siegman, Mat. Res. Soc. Symp. Proc. 23, 63 (1984).

    CAS  Article  Google Scholar 

  3. 3.

    N. Bloembergen, Mat. Res. Soc. Symp. Proc. 51, 3 (1986).

    CAS  Article  Google Scholar 

  4. 4.

    S. Williamson, G. Mourou and J.C. Lee, Mat. Res. Soc. Symp. Proc. 35, 87 (1985).

    CAS  Article  Google Scholar 

  5. 5.

    J.M. Liu, H. Kurz and N. Bloembergen, Appl. Phys. Lett. 41, 643 (1982).

    CAS  Article  Google Scholar 

  6. 6.

    N. Fabricius, P. Hermes, D. von der Linde, A. Pospieszczyk and B. Stritzker, Solid State Commun. 58, 239 (1986).

    CAS  Article  Google Scholar 

  7. 7.

    D. von der Linde, Ν. Fabricius, Β. Danielzik and T. Bonkhofer, Mat. Res. Soc. Symp. Proc. 74, 103 (1987).

    Article  Google Scholar 

  8. 8.

    P.M. Fauchet and W.L. Nighan, Jr., Appl. Phys. Lett. 48, 721 (1986).

    CAS  Article  Google Scholar 

  9. 9.

    K.D. Li and P.M. Fauchet, Solid State Commun. 61, 207 (1987).

    CAS  Article  Google Scholar 

  10. 10.

    K.D. Li and P.M. Fauchet, Appl. Phys. Lett. 51, 1726 (1987).

    Article  Google Scholar 

  11. 11.

    P.M. Fauchet and K.D. Li, J. Non-Cryst. Solids, in press.

  12. 12.

    N.K. Bambha, W.L. Nighan, Jr., I.H. Campbell, P.M. Fauchet and N.M. Johnson, J. Appl. Phys., March 15, 1988, in press.

  13. 13.

    K.M. Shvarev, B.A. Baum and P.V. Gel’d, Sov. Phys. Solid State 16, 2111 (1975).

    Google Scholar 

  14. 14.

    G.M. Gusakov, A.A. Komarnitskii and S.S. Sarkisyan, Sov. Tech. Phys. Lett. 12, 74 (1986).

    Google Scholar 

  15. 15.

    G.E. Jellison, Jr. and D.H. Lowndes, Appl. Phys. Lett. 47, 718 (1985).

    CAS  Article  Google Scholar 

  16. 16.

    G.E. Jellison, Jr. and D.H. Lowndes, Appl. Phys. Lett. 51, 352 (1987).

    CAS  Article  Google Scholar 

  17. 17.

    M.O. Lampert, J.M. Koebel and P. Siffert, J. Appl. Phys. 52, 4975 (1981).

    CAS  Article  Google Scholar 

  18. 18.

    R.F. Wood and G.E. Giles, Phys. Rev. B23, 2923 (1981).

    Article  Google Scholar 

  19. 19.

    P. Baeri, S.U. Campisano, G. Foti and E. Rimini, J. Appl. Phys. 50, 788 (1979).

    CAS  Article  Google Scholar 

  20. 20.

    K. Ujihara, J. Appl. Phys. 43, 2376 (1972).

    CAS  Article  Google Scholar 

  21. 21.

    F. Spaepen, in Ultrafast Phenomena V, G.R. Fleming and A.E. Siegman editors, Springer-Verlag, 1986, p. 174.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. M. Fauchet.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fauchet, P.M., Li, K.D. Picosecond Laser Induced Melting: The Dielectric Function of Molten Silicon and Superheating in the Liquid Phase. MRS Online Proceedings Library 100, 477 (1987). https://doi.org/10.1557/PROC-100-477

Download citation