Transition State Model for Grain Boundary Motion During Ion Bombardment

Abstract

Ion bombardment of polycrystalline Ge, Si, and Au films leads to rates of grain boundary motion that greatly exceed rates of thermally-induced motion at the same temperature and which exhibit a weak temperature dependence. The enhanced migration rate is proportional to the rate of energy deposition in nuclear collisions at or very near the grain boundary. Experimental work is reviewed, and a transition state model is presented which accounts for the observed kinetics of grain boundary migration during bombardment. This model suggests that the rate limiting step in grain boundary motion may be thermally-induced migration of a bombardment-generated defect across the boundary. Also, the ratio of atomic jumps at grain boundaries to the local collision-induced Frenkel defect generation rate is shown to be characteristic of each material, but independent of ion mass and ion flux. The model is extended to the motion of an interface between two phases, and applications to crystallization during ion bombardment are discussed.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J. Linnros, B. Svennson and G. Holmen, Phys. Rev. B30, 3629 (1984); J. Linnros, G. Holmen and B. Svennson, Phys. Rev. B32, 2770 (1985).

    CAS  Article  Google Scholar 

  2. [2]

    J. S. Williams, R. G. Elliman, W. L. Brown and T. E. Seidel, Phys. Rev. Lett., 55, 1482 (1985).

    CAS  Article  Google Scholar 

  3. [3]

    H. A. Atwater, H. I. Smith and C. V. Thompson, in Beam-Solid Interactions and Phase Transformations, edited by H. Kurz, G.L. Olson and J.M. Poate (Materials Research Society, Pittsburgh, PA, 1986), Vol 51, pp. 337–342.

    Google Scholar 

  4. [4]

    H.A. Atwater, C.V. Thompson and H.I. Smith, in Beam-Solid Interactions and Transient Processes, edited by S.T. Picraux, M.O. Thompson and J.S. Williams(Materials Research Society, Pittsburgh, PA, 1987), Vol. 74, pp 499–504.

    Google Scholar 

  5. [5]

    P. Wang, D.A. Thompson and W.W. Smeltzer, Nucl. Instr. and Meth., B7/8, 97 (1986).

    Google Scholar 

  6. [6]

    P. Wang, D.A. Thompson and W.W. Smeltzer, Nucl. Instr. and Meth., Β16, 288 (1986).

    CAS  Article  Google Scholar 

  7. [7]

    H.A. Atwater, C.V. Thompson and H.I. Smith, submitted to J. Appl. Phys.

  8. [8]

    D.Turnbull, Trans. AIME, 191, 661 (1951).

    Google Scholar 

  9. [9]

    F. Spaepen and D. Turnbull, in Laser Annealing and Electron Beam Processing of Semiconductor Structures, edited by J.M. Poate and J.W. Mayer(Academic Press, New York, 1981), p. 15.

    Google Scholar 

  10. [10]

    J.S. Williams and R.G. Elliman, Phys. Rev. Lett., 51, 1069 (1983).

    CAS  Article  Google Scholar 

  11. [11]

    G.N. Van Wyk and H.J. Smith, Nucl. Instrum. Methods 170, 433 (1980).

    Article  Google Scholar 

  12. [12]

    J.W. Mayer and S.S. Lau, in Surface Modification and Alloying by Laser, Ion and Electron , J.M. Poate, G. Foti, and D.C. Jacobson eds., (Plenum Press, New York, 1983) p. 255.

    Google Scholar 

  13. [13]

    J.C. Liu and J.W. Mayer, Nucl. Instr. and Meth., B19/20, 538 (1987).

    Article  Google Scholar 

  14. [14]

    J.C. Liu, M. Nastasi and J.W. Mayer, J. Appl.Phys., 62, 423 (1987).

    CAS  Article  Google Scholar 

  15. [15]

    G.F. Boiling and W.C. Winegard, Acta Metall., 6, 283 (1958); P. Gordon and T.A. El-Bassyouni, Trans. A.I.M.E., 233, 391 (1965).

    CAS  Article  Google Scholar 

  16. [16]

    J. P. Biersack and L. G. Haggmark, Nucl. Instr. and Meth. 174, 257 (1980).

    CAS  Article  Google Scholar 

  17. [17]

    P.A. Beck, Phil. Mag. Suppl. 3, 245 (1954); P.A. Beck, J.C. Demer, and M.L. Holzworth, Trans. Amer. Inst. Min. Met. Eng. 175, 372 (1948).

    Google Scholar 

  18. [18]

    W.W. Mullins, J. Appl. Phys., 28, 333 (1957).

    CAS  Article  Google Scholar 

  19. [19]

    M. Hillert, Acta. Metall., 13, 227 (1965).

    CAS  Article  Google Scholar 

  20. [20]

    J.A. Van Vechten, Phys. Rev. B10, 1482 (1974).

    Article  Google Scholar 

  21. [21]

    G.D. Watkins, in Radiation Damage in Semiconductors (Dunod, Paris, 1965), p. 97.; G.D. Watkins, J. Phys. Soc. Jap. 18, Suppl. II, 22 (1963).

    Google Scholar 

  22. [22]

    J. Hornstra, Physica, 25, 409 (1959); J.T. Wetzel, A.A. Levi and D.A. Smith, in Grain Boundary Structure and Related Phenomena, JIMIS-4, 1986, pp. 1061–1067.

    CAS  Article  Google Scholar 

  23. [23]

    J. Linnros, R.G. Elliman and W.L. Brown, in Beam-Solid Interactions and Transient Processes, edited by S.T. Picraux, M.O. Thompson and J.S. Williams (Materials Research Society, Pittsburgh, PA, 1987), Vol. 74, pp 477–480.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Harry A. Atwater.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Atwater, H.A., Thompsonm, C.V. & Smith, H.I. Transition State Model for Grain Boundary Motion During Ion Bombardment. MRS Online Proceedings Library 100, 345 (1987). https://doi.org/10.1557/PROC-100-345

Download citation