Skip to main content
Log in

DLTS: A Promising Technique for Understanding the Physics and Engineering of the Point Defects in Si and III-V Alloys

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Deep level transient spectroscopy (DLTS) is the best technique for monitoring and characterizing deep levels introduced intentionally or occurring naturally in semiconductor materials and complete devices. DLTS has the advantage over all the techniques used to-date in that it fulfils almost all the requirements for a complete characterization of a deep centre and their correlation with the device properties. In particular the method can determine the activation energy of a deep level, its capture cross-section and concentration and can distinguish between traps and recombination centers.

In this invited paper we provide an overview of the extensive R & D work that has been carrier out by the authors on the identification of the recombination and compensator centers in Si and III-V compound materials for space solar cells. In addition, we present an overview of key problems that remain in the understanding of the role of the point defects and their correlation with the solar cell parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. V. Lang, J. Appl. Phys. 45, 3023 (1974).

    Article  CAS  Google Scholar 

  2. M. Yamaguchi, A. Khan, S. J. Taylor, K. Ando, T. Yamaguchi, S. Matsuda, and T. Aburaya, J. Appl. Phys. 86, 217 (1999).

    Article  CAS  Google Scholar 

  3. A. Khan, M. Yamaguchi, M. Kaneiwa, T. Saga T. Abe, O. Annzawa and S. Matsuda. J. Appl. Phys. 90, 1170(2001).

  4. A. Khan, M. Yamaguchi, M. Kaneiwa, T. Saga T. Abe, O. Annzawa and S. Matsuda. J. Appl. Phys. 87, 8389 (2000).

    Article  CAS  Google Scholar 

  5. A. Khan, M. Yamaguchi, J.C. Bourgoin and T. Takamoto., Appl. Phys. Lett. 76, 2550 (2000).

    Article  Google Scholar 

  6. J. C. Bourgoin and J. W. Corbett, Radiation Effects 36, 157 (1978).

    Article  CAS  Google Scholar 

  7. L. C. Kimerling, Solid State Electronics, 21, 1391 (1978).

    Article  CAS  Google Scholar 

  8. L. C. Kimerling and D. V. Lang, Inst. Phys.Conf. Ser. 23, 589 (1975).

    CAS  Google Scholar 

  9. J. C. Bourgoin and J. W. Corbett, Phys. Lett. 83A, 135 (1972).

  10. J. C. Bourgoin and J. W. Corbett, Inst. Phys. Conf. Ser. 23, 149 (1975).

    CAS  Google Scholar 

  11. D. V. Lang and L. C. Kimerling, Phys. Rev. Lett. 35, 22 (1975).

    Article  Google Scholar 

  12. A. Khan, Masafumi Yamaguchi, Jacques C. Bourgoin, and Tatsuya Takamoto. J. Appl. Phys. 89, 4263 (2001).

    Article  CAS  Google Scholar 

  13. A. Khan, S. Marupaduga , M. Alam, N. J. Ekins-Daukes, Appl. Phys. Lett. 85, 5218 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A., Yamaguchi, M. DLTS: A Promising Technique for Understanding the Physics and Engineering of the Point Defects in Si and III-V Alloys. MRS Online Proceedings Library 994, 09940705 (2006). https://doi.org/10.1557/PROC-0994-F07-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0994-F07-05

Navigation