Skip to main content
Log in

Simulation of Vacancy Cluster Formation and Binding Energies in Single Crystal Germanium

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Results are presented of the simulation of the properties of vacancy clusters in single crystal germanium. Classical molecular dynamics calculations based on a Stillinger and Weber potential were used in a theoretical investigation of different growth patterns of vacancy clusters Vi. The formation and binding energies of vacancy clusters have been studied in the range 1i35. The energetically favourable growth mode and an estimate of the effective surface energy was determined for a vacancy clusters containing up to 35 vacancies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Vanhellemont, P. Śpiewak, K. Sueoka, J. Appl. Phys. 101, 036103 (2007)

  2. P. Śpiewak, M. Muzyk, K. J. Kurzydłowski, J. Vanhellemont, P. Wabiński, K. Młynarczyk and I. Romandic, J. Crystal Growth, (2007) (in press).

  3. J. Roth, “IMD – A Molecular Dynamics Program and Applications”, Proc. of the Workshop on Molecular Dynamics on Parallel Computers, ed. R. Esser, P. Grassberger, J. Grotendorst, M. Lawerenz (World Scientific, Singapore 2000) p. 83.

  4. http://www.itap.physik.uni-stuttgart.de/~imd/index.html

  5. F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985).

    Article  CAS  Google Scholar 

  6. Z.Q. Wang, D. Stroud, Phys. Rev. B 38, 1384 (1988).

    Article  CAS  Google Scholar 

  7. W.G. Hoover, Phys. Rev A 31, 1695 (1985).

    Article  CAS  Google Scholar 

  8. W.G. Hoover, Phys. Rev A 34, 2499 (1986).

    Article  CAS  Google Scholar 

  9. M. Prasad, T. Sinno, Appl. Phys. Lett. 80, 1951 (2002).

    Article  CAS  Google Scholar 

  10. M. Prasad, T. Sinno, Phys. Rev. B 68, 045206 (2003).

    Article  Google Scholar 

  11. Bongiorno, L. Colombo, T. Diaz de la Rubia, Europhys. Lett. 43, 4177 (1998).

    Article  Google Scholar 

  12. Van Veen, H. Schut, A. Rivera, A.V. Fedorov, Mat. Res. Soc. Symp. Proc. 398, 155 (1996).

    Google Scholar 

  13. G. H. Gilmer, T. Diaz de la Rubia, D. M. Stock, M. Jaraiz, Nucl. Instrum. Methods Phys. Res. B 102, 247 (1995).

    Article  CAS  Google Scholar 

  14. T. Sinno, R.A. Brown, J. Electrochem. Soc. 146, 2300 (1999).

    Article  CAS  Google Scholar 

  15. M. S. Kulkarni, V. Voronkov, R. Falster, J. Electrochem. Soc. 151, G663 (2004).

  16. D. J. Chadi and K. J. Chang, Phys. Rev. B 38, 1523 (1988).

    Article  CAS  Google Scholar 

  17. C. Janke, R. Jones, J. Coutinho, S. Oberg, P. R. Briddon, Mater. Sci. Semicond. Process 9, 484 (2006).

    Article  CAS  Google Scholar 

  18. K. Sueoka and J. Vanhellemont, Mater. Sci. Semicond. Process 9, 494 (2006).

    Article  CAS  Google Scholar 

  19. C.Z. Wang, C.T. Chan, K.M. Ho, Phys. Rev. Lett. 66, 189 (1991).

    Article  CAS  Google Scholar 

  20. S. Öğüt, H. Kim, J.R. Chelikowsky, Phys. Rev. B 56, R11353 (1997).

  21. Antônio J.R. da Silva, R.J. Baierle, R. Motta, A. Fazzio, Physica B, 302 (2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiewak, P., Kurzydlowski, K.J., Vanhellemont, J. et al. Simulation of Vacancy Cluster Formation and Binding Energies in Single Crystal Germanium. MRS Online Proceedings Library 994, 09940308 (2006). https://doi.org/10.1557/PROC-0994-F03-08

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0994-F03-08

Navigation