Simulation of Vacancy Cluster Formation and Binding Energies in Single Crystal Germanium

Abstract

Results are presented of the simulation of the properties of vacancy clusters in single crystal germanium. Classical molecular dynamics calculations based on a Stillinger and Weber potential were used in a theoretical investigation of different growth patterns of vacancy clusters Vi. The formation and binding energies of vacancy clusters have been studied in the range 1i35. The energetically favourable growth mode and an estimate of the effective surface energy was determined for a vacancy clusters containing up to 35 vacancies

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. Vanhellemont, P. Śpiewak, K. Sueoka, J. Appl. Phys. 101, 036103 (2007)

  2. 2.

    P. Śpiewak, M. Muzyk, K. J. Kurzydłowski, J. Vanhellemont, P. Wabiński, K. Młynarczyk and I. Romandic, J. Crystal Growth, (2007) (in press).

  3. 3.

    J. Roth, “IMD – A Molecular Dynamics Program and Applications”, Proc. of the Workshop on Molecular Dynamics on Parallel Computers, ed. R. Esser, P. Grassberger, J. Grotendorst, M. Lawerenz (World Scientific, Singapore 2000) p. 83.

  4. 4.

    http://www.itap.physik.uni-stuttgart.de/~imd/index.html

  5. 5.

    F.H. Stillinger, T.A. Weber, Phys. Rev. B 31, 5262 (1985).

    CAS  Article  Google Scholar 

  6. 6.

    Z.Q. Wang, D. Stroud, Phys. Rev. B 38, 1384 (1988).

    CAS  Article  Google Scholar 

  7. 7.

    W.G. Hoover, Phys. Rev A 31, 1695 (1985).

    CAS  Article  Google Scholar 

  8. 8.

    W.G. Hoover, Phys. Rev A 34, 2499 (1986).

    CAS  Article  Google Scholar 

  9. 9.

    M. Prasad, T. Sinno, Appl. Phys. Lett. 80, 1951 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    M. Prasad, T. Sinno, Phys. Rev. B 68, 045206 (2003).

    Article  Google Scholar 

  11. 11.

    Bongiorno, L. Colombo, T. Diaz de la Rubia, Europhys. Lett. 43, 4177 (1998).

    Article  Google Scholar 

  12. 12.

    Van Veen, H. Schut, A. Rivera, A.V. Fedorov, Mat. Res. Soc. Symp. Proc. 398, 155 (1996).

    Google Scholar 

  13. 13.

    G. H. Gilmer, T. Diaz de la Rubia, D. M. Stock, M. Jaraiz, Nucl. Instrum. Methods Phys. Res. B 102, 247 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    T. Sinno, R.A. Brown, J. Electrochem. Soc. 146, 2300 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    M. S. Kulkarni, V. Voronkov, R. Falster, J. Electrochem. Soc. 151, G663 (2004).

  16. 16.

    D. J. Chadi and K. J. Chang, Phys. Rev. B 38, 1523 (1988).

    CAS  Article  Google Scholar 

  17. 17.

    C. Janke, R. Jones, J. Coutinho, S. Oberg, P. R. Briddon, Mater. Sci. Semicond. Process 9, 484 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    K. Sueoka and J. Vanhellemont, Mater. Sci. Semicond. Process 9, 494 (2006).

    CAS  Article  Google Scholar 

  19. 19.

    C.Z. Wang, C.T. Chan, K.M. Ho, Phys. Rev. Lett. 66, 189 (1991).

    CAS  Article  Google Scholar 

  20. 20.

    S. Öğüt, H. Kim, J.R. Chelikowsky, Phys. Rev. B 56, R11353 (1997).

  21. 21.

    Antônio J.R. da Silva, R.J. Baierle, R. Motta, A. Fazzio, Physica B, 302 (2001).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Piotr Spiewak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Spiewak, P., Kurzydlowski, K.J., Vanhellemont, J. et al. Simulation of Vacancy Cluster Formation and Binding Energies in Single Crystal Germanium. MRS Online Proceedings Library 994, 09940308 (2006). https://doi.org/10.1557/PROC-0994-F03-08

Download citation