Determination of Inelastic Mean Free Path by Electron Energy-Loss Spectroscopy in TEM: A Model Study using Si and Ge

Abstract

Although the inelastic mean free path for Si and Ge have been measured previously, reported experimental values for silicon range from 121 nm to 160 nm for 200 keV and a large collection angle. A key factor responsible for this uncertainty is the lack of an accurate measurement of the specimen thickness at the point at which the EELS spectra are obtained. In this research, we have evaluated a systematic methodology for determination of the specimen thickness. In the thickness measurement based on converging beam electron diffraction, CBED, instead of the classic “trial and error” straight-line-fitting method to either the maxima or minima, a non-linear least square fitting of the theoretical diffraction profile to the energy filtered two-beam CBED is used. The low-loss EELS spectrum is also obtained from the same location. The inelastic mean free path was determined using the measured thickness and EELS data.

This is a preview of subscription content, access via your institution.

References

  1. 1

    G. A. Botton, G. L’Esperance, C. E. Gallerneault, and M. D. Ball, J. Microscopy 180, 217 (1995).

    CAS  Article  Google Scholar 

  2. 2

    R. F. Egerton and M. Malac, J. Electron Micro. Related Phen 143, 43 (2005).

    CAS  Article  Google Scholar 

  3. 3

    C. J. Powell and A. Jablonski, Surf. Interf. Analy. 29, 108 (2000).

    CAS  Article  Google Scholar 

  4. 4

    S. Allen and E. L. Hall, Philos. Magz. 46, 243 (1982).

    CAS  Article  Google Scholar 

  5. 5

    S. M. Allen, Philos. Magz. 43, 325 (1981).

    CAS  Article  Google Scholar 

  6. 6

    P. M. Kelly, A. Jostsons, R. G. Blake, and J. G. Napier, Phys. Stat. Sol. (a) 31, 771 (1975).

    CAS  Article  Google Scholar 

  7. 7

    F. R. Catro-Fernandez, C. M. Sellars, and J. A. Whiteman, Philos. Magz. 52, 289 (1985).

    Article  Google Scholar 

  8. 8

    D. Delille, R. Pantel, and E. V. Cappellen, Ultramicroscopy 87, 5 (2001).

    CAS  Article  Google Scholar 

  9. 9

    P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron microscopy of thin crystals (Butterworths, London, 1965).

    Google Scholar 

  10. 10

    R. F. Egerton and S. C. Cheng, Ultramicroscopy 21, 231 (1987).

    Article  Google Scholar 

  11. 11

    R. F. Egerton, Electron Energy-loss Spectroscopy in Electron Microscope, Second ed. (Plenum Press, New York, 1996).

  12. 12

    T. Malis, S. C. Cheng, and R. F. Egerton, J. Electron Micro. Tech. 7, 193 (1988).

    Article  Google Scholar 

  13. 13

    J. C. H. Spence and J. M. Zuo, Electron Microdiffraction (Plenum Press, NEw York, 1992).

    Google Scholar 

  14. 14

    W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, Second ed. (Cambridge University Press, Cambridge, 1992).

  15. 15

    Q. Jin and D. Li, Microsc Microanal 12(Supp 2), 1186CD (2006).

  16. 16

    C. W. Lee, Y. Ikematsu, and D. Shindo, J. Electron Microscopy 51, 143 (2002).

    CAS  Article  Google Scholar 

  17. 17

    A. Nakafuji, Y. Murakami, and D. Shindo, J. Electron Microscopy 50, 23 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Q. Jin and S. Wang, Mocrosc Microanal 12(supp 2), 1184CD (2006).

  19. 19

    S.T. Perkins, D.E. Cullen, and S.M. Seltzer, Tables and Graphs of Electron-Interaction Cross-Sections from 10 eV to 100 GeV Derived from the LLNL Evaluated Electron Data Library (EEDL), Z=1-100, Vol. 31.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chongmin Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, C., Cannon, B.D. Determination of Inelastic Mean Free Path by Electron Energy-Loss Spectroscopy in TEM: A Model Study using Si and Ge. MRS Online Proceedings Library 982, 713 (2006). https://doi.org/10.1557/PROC-0982-KK07-13

Download citation