Electron Tomography of SPM Probes, Nanoparticles and Precipitates


Nanoscale tomographic reconstructions from objects with diameters of 100nm or smaller can only be achieved non-destructively with transmission electron tomography. The application of this technique to W tips, which are common probes for scanning tunneling microscopy and nanoindentation, is demonstrated with emphasis on visualizing oxide layers and functionally attached nanoparticles. For the reconstruction of facetted free-standing catalyst nanoparticles, such as CeO2 octahedra, we propose a combination of energy-filtered (EF) and bright field (BF) TEM tomography to achieve high fidelity of the projection relationship via EFTEM, due to its incoherent imaging mode, and high resolution definition of the particle circumference from the BF tomogram. Finally, electron tomography applications to CeO2 nanoprecipitates embedded in a multicomponent oxide glass matrix are shown, which comprises the first tomographic 3D reconstruction of a nanoscale dendrite.

This is a preview of subscription content, access via your institution.


  1. 1.

    Frank J (Ed.) Electron Tomography: Three-dimensional Imaging with the Transmission Electron Microscope, (Plenum Press, New York, London, 1992).

  2. 2.

    D. De Rosier and A. Klug, Nature 217, 130 (1968).

    Article  Google Scholar 

  3. 3.

    W. Baumeister, R. Grimm, and J. Walz, Cell Biol 9, 81 (1999).

    CAS  Google Scholar 

  4. 4.

    A.J. Koster, et al., J. Phys. Chem. B 104, 9368 (2000).

    CAS  Article  Google Scholar 

  5. 5.

    G. Möbus and B.J. Inkson, Appl. Phy. Lett. 79, 1369 (2001); G. Möbus and B.J. Inkson, Ultramicroscopy 96, 433 (2003).

    Article  Google Scholar 

  6. 6.

    P.A. Midgley and M. Weyland, Ultramicroscopy 96, 413 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    H. Friedrich, M.R. McCartney, and P.R. Buseck, Ultramicroscopy 106, 18 (2005).

  8. 8.

    A. Cerezo, T.J. Godfrey, M. Huang, G.D.W. Smith, Rev. Sci. Instrum. 71, 3016 (2000).

    CAS  Article  Google Scholar 

  9. 9.

    T.J. Steer et al., Thin solid films 413, 147 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    G. Yang, G. Möbus, and R.J. Hand, Phys. Chem. Glass 47 (2006).

  11. 11.

    G. Yang, G. Möbus, and R.J. Hand, Micron 37, 433 (2006).

    CAS  Article  Google Scholar 

  12. 12.

    J.R. Kremer, D.N. Mastronarde, and J.R. McIntosh, J. Struct. Biol. 116, 71 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    IDL, Interactive Data Language, ITT systems, Boulder, CO, USA.

  14. 14.

    X. Xu, Z. Saghi, Y. Peng, R. Gay, B.J. Inkson, G. Möbus, Microsc. and Microanal., 12(Supp 2), 648–649 (2006).

  15. 15.

    G. Yang et al., Symposium NN, this conference (2006).

  16. 16.

    T Haxhimali et al., Nature Materials 5, 660 (2006).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Xiaojing Xu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xu, X., Saghi, Z., Yang, G. et al. Electron Tomography of SPM Probes, Nanoparticles and Precipitates. MRS Online Proceedings Library 982, 204 (2006). https://doi.org/10.1557/PROC-0982-KK02-04

Download citation