Tailoring Magnetic Microspheres with Controlled Porosity

Abstract

The synthesis of organic and inorganic nano- and microspheres has attracted much interest for a variety of applications ranging from drug delivery to chemical storage and catalysis. We recently demonstrated the assembly of magnetic nanoparticles and polycations into hybrid microspheres in a single-step synthesis via complex coacervation. These microspheres showed viability for bio-applications as indicated by toxicity tests, and are therefore potential targeted drug delivery devices, as they can be directed magnetically. This work reports the recent progress on the potential use of these assemblies in drug release by controlling their porosity. Fluorescein tagged dextran molecules with different MW have been infiltrated into these entities to determine critical pore size by confocal fluorescence microscopy. Different physicochemical characterization results are also presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Tartaj, M. P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C. J. Serna, J. Phys. D: Appl. Phys. 36, R182 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    U. Hafeli, G. Pauer, S. Failing, G. Tapolsky, J. Magn. Magn. Mater. 225, 73 (2001).

    CAS  Article  Google Scholar 

  3. 3.

    T. Neuberger, B. Schöpf, H. Hofmann, M. Hofmann, B. Von Rechenberg, J. Magn. Magn. Mater. 293, 483 (2005).

    CAS  Article  Google Scholar 

  4. 4.

    S. Mornet, S. Vasseur, F. Grasset, E. Duguet, J. Mater. Chem. 14, 2161 (2004)

    CAS  Article  Google Scholar 

  5. 5.

    D. Högemann, L. Josephson, R. Weissleder, J. P. Basilion, Bioconjugate Chem. 11, 941 (2000)

    Article  Google Scholar 

  6. 6.

    D. R. Baselt, G. U. Lee, M. Natesan, S. W. Metzger, P. E. Sheehan, R. J. Colton, Biosens. Bioelectron. 13, 731 (1998)

    CAS  Article  Google Scholar 

  7. 7.

    J. Ugelstad, A. Berge, T. Ellingsen, R. Schmid, T.-N. Nilsen, P. C. Mork, P. Stenstad, E. Hornes, O. Olsvik, Prog. Polym. Sci. 17, 87 (1992).

    CAS  Article  Google Scholar 

  8. 8.

    C. Bergemann, D. Muller-Schulte, J. Oster, L. A. Brassard, A.S. Lubbe, J. Magn. Magn. Mater. 194, 45 (1999).

    CAS  Article  Google Scholar 

  9. 9.

    Y. R. Chemla, H. L. Crossman, Y. Poon, R. McDermott, R. Stevens, M. D. Alper, J. Clarke, Proc. Natl. Acad. Sci. USA 97, 14268 (2000).

  10. 10.

    M. Megens, M. Prins, J. Magn. Magn. Mater. 293, 702 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    R.V. Ramanujak, W.T. Chong, J. Mater. Sci. Mater. Med. 15, 901 (2004).

    Article  Google Scholar 

  12. 12.

    C. Yang, H. Liu, Y. Guan, J. Xing, J. Liu, G. Shan, J. Magn. Magn.Mater. 293, 187 (2005).

    CAS  Article  Google Scholar 

  13. 13.

    D. Horák, N. Semenyuk, F. Lednicky, J. Polym. Sci. Polym. Chem.Ed. 41, 1848 (2003)

    Article  Google Scholar 

  14. 14.

    A. Kondo, H. Kamura, K. Higashitani, Appl. Microbiol. Biotechnol. 41, 99 (1994).

    CAS  Article  Google Scholar 

  15. 15.

    F. Caruso, A. S. Susha, M. Giersig, H. Möhwald, Adv. Mater. 11, 950 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    W. Tong, C. Gao, H. Möhwald, Chem. Mater. 17, 4610 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    M. S. Toprak, B. Mckenna, G. Stucky, H. Waite, to be published in Adv. Mater.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammet S. Toprak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Toprak, M.S., McKenna, B.J., Waite, H. et al. Tailoring Magnetic Microspheres with Controlled Porosity. MRS Online Proceedings Library 969, 311 (2006). https://doi.org/10.1557/PROC-0969-W03-11

Download citation