Novel Nanocarbons: Global Topology and Curvature Perspectives


Carbon nanotubes (both the single- and multi-walled), in the family of nanostructured carbons, are of great interest because of several unsurpassable physical properties and it needs to be shown that they are physically stable and structurally unaltered when subjected to radiation. In addition to testing them for space applications, when exposed to high energy electron beam from transmission electron microscopy, the results seem quite promising in terms of nano-engineering/ nano-manufacturing for producing novel nanocarbons [1-3]. Experimental studies of effects of electron beam irradiation on carbon nanotubes show that multi-walled ones tend to be relatively more robust than their single-walled kins. The increased exposure on an individual bundle of single-wall nanotubes promoted graphitization, pinching, and cross-linking analogous to polymers forming an intra-molecular junction (IMJ) within the area of electron beam focus, possibly through aggregates of amorphous carbon [2,3]. Formation of novel nanostructures (nano-ring and helix-like) due to irradiation are observed. These studies shed light on the dynamics of nanomanufacturing and a regime of possible relevance of these materials for: (i) short-term space missions; (ii) radiation hard programmable logic circuits; and (iii) radiation pressure sensors. It is suggestive that a local reorganization occurs. Through resonance Raman spectroscopy and related techniques we also elucidate an important notion of global topology and curvature at nanoscale which points to an emergent paradigm of Curvature/Topology → Property → Functionality in these technologically important geometries of carbons: nanotubes, fullerenes, nanorings, nanocones, nanohorns and nanodisks. To this end, we have determined the variation in first order high frequency Raman band which indicates a strong electron-phonon coupling. These concepts also apply to nanostructures of other “topological materials” such as BN nanotubes and nanotori, helical gold nanotubes as well as Möbius conjugated polymers.

This is a preview of subscription content, access via your institution.


  1. 1.

    H. W. Kroto, J. R. Heath, S. C. B’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985); W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature 347, 354 (1990).

    Article  Google Scholar 

  2. 2.

    R. F. Curl and R. E. Smalley, Sci. Amer. 265, 32 (1991).

    Article  Google Scholar 

  3. 3.

    S. Iijima, Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  4. 4.

    K. Sattler, Carbon 33, 915 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    J.-C. Charlier and G.-M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001).

    CAS  Article  Google Scholar 

  6. 6.

    A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, and T. W. Ebbesen, Nature 388, 451 (1997); T. W. Ebbesen, Acc. Chem. Res. 31, 558 (1998).

    Article  Google Scholar 

  7. 7.

    R. Martel, H. R. Shea, and P. Avouris, Nature 398, 299 (1999).

    CAS  Article  Google Scholar 

  8. 8.

    M. Sano, A. Kamino, J. Okamura, and S. Shinkai, Science 293, 1299 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    D.-H. Oh, J. M. Park, and K. S. Kim, Phys. Rev. B 62, 1600 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    W. A. de Heer and D. Ugarte, Chem. Phys. Lett. 207, 480 (1993).

    Article  Google Scholar 

  11. 11.

    A. Rubio, J. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5081 (1994); X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett. 28, 335 (1994).

    Article  Google Scholar 

  12. 12.

    N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science 269, 966 (1995); L. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).

    Article  Google Scholar 

  13. 13.

    Y. Oshima, A. Onga, and K. Takayanagi, Phys. Rev. Lett. 91, 205503 (2003).

    Article  Google Scholar 

  14. 14.

    S. Tanda et. al., Nature 417, 397 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    D. Ajami et. al., Nature 426, 819 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    K. Harigaya, J. Phys. Soc. Jpn. 74, 523 (2005). % cond-mat/0412309.

  17. 17.

    Y. Hong, N. Coombs, and G. A. Ozin, Nature 386, 692 (1997).

    Article  Google Scholar 

  18. 18.

    L. W. Hobbs, C. E. Jesurum. V. Pulim, and B. Berger, Phil. Mag. A 78, 679 (1998).

    CAS  Article  Google Scholar 

  19. 19.

    X. Michalet and D. Bensimon, Science 269,666 (1995); X. Michalet, D. Bensimon, and B. Fourcade, Phys. Rev. Lett. 72, 168 (1994).

    CAS  Article  Google Scholar 

  20. 20.

    M. Karlsson, K. Sott, M. Davidson, A.-S. Cans, P. Linderholm, D. Chiu, and O. Orwar, Proc. Nat. Acad. Sci. 99, 11573 (2002).

    CAS  Article  Google Scholar 

  21. 21.

    Thinking Topologically about Photochemistry in Restricted Spaces, N. J. Turro and M. Garcia-Garibay in Chapt. 1, pp.1 of Photochemistry in Organized and Constrained Media, ed. V. Ramamurthy (VCH Publishers, New York, 1991).

  22. 22.

    M. Nakahara, Geometry, Topology and Physics, Graduate Student Series in Physics (Adam Hilger, Bristol, 1990).

  23. 23.

    P. J. F. Harris, R. D. Vis, and D. Heymann, Earth Planet. Sci. Lett. 183, 355 (2000).

    CAS  Article  Google Scholar 

  24. 24.

    D. Heymann, L. W. Jenneskens, J. Jehlicka, C. Koper, and E. Vlietstra, Fullerenres Nanotubes Carbon Nanostr. 11, 333 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    E. Dujardin, T. Thio, H. Lezec, and T. W. Ebbesen, Appl. Phys. Lett. 79, 2474 (2001).

    CAS  Article  Google Scholar 

  26. 26.

    S. B. Sinnott and R. Andrews, Crit. Rev. Solid State Mater. Sci. 26, 145 (2001).

    CAS  Article  Google Scholar 

  27. 27.

    R. T. Senger, S. Dag, and S. Ciraci, cond-mat/0410363; T. Ono and K. Hirose, cond-mat/0409721.

  28. 28.

    T. W. Ebbesen and T. Takada, Carbon 33, 973 (1995).

    CAS  Article  Google Scholar 

  29. 29.

    V. H. Crespi, Phys. Rev. B 58, 12671 (1998).

    CAS  Article  Google Scholar 

  30. 30.

    C. K. Haluska, W. T. Gozdz, H.-G. Döbereiner, S. Förster, and G. Gompper, Phys. Rev. Lett. 89, 238302 (2002).

    Article  Google Scholar 

  31. 31.

    D. J. Hombacker, S.-J. Kahng, S. Misra, B. W. Smith, A. T. Johnson, E. J. Mele, D. E. Luzzi, and A. Yazdani, Science 295, 828 (2002).

    Article  Google Scholar 

  32. 32.

    S. Bandow, T. Hiraoka, T. Yumura, K. Hirahara, H. Shinohara, and S. Iijima, Chem. Pl Figure 3. 320 (2004).

  33. 33.

    K. Sasaki, Y. Kawazoe, and R. Saito, Phys. Lett. A 321, 369 (2004).

    CAS  Article  Google Scholar 

  34. 34.

    P. R. Bandaru, C. Daraio, S. Jin, and A. M. Rao, Nature Mater. 4, 663 (2005); H. Xu, Nature Mater. 4, 649 (2005).

    Article  Google Scholar 

  35. 35.

    P. R. Gill, W. Murray, and M. H. Wright, The Levenberg-Marquardt Method, Sec. 4.7.3 in Practical Optimization, (Academic Press, London, 1981), pp.136–137.

  36. 36.

    X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Phys. Rev. Lett. 72, 1878 (1994).

    CAS  Article  Google Scholar 

  37. 37.

    A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187 (1997).

    CAS  Article  Google Scholar 

  38. 38.

    C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).

    CAS  Article  Google Scholar 

  39. 39.

    M. Fanti, G. Orlandi, and F. Zerbetto, J. Phys. B 29, 5065 (1996).

    CAS  Article  Google Scholar 

  40. 40.

    Fullerene and Fullerene Polymer Composites, edited by P.C. Eklund and A. M. Rao (Springer-Verlag, Berlin, 1999).

  41. 41.

    H. Wang, M. Chhowalla, N. Sano, S. Jia, and G. A. J. Amaratunga, Nanotechnology 15, 546 (2004)

  42. 42.

    P. Tan, S. Dimovski, and Y. Gogotsi, Phil. Trans. R. Soc. Lond. A 362, 2289 (2004).

    CAS  Article  Google Scholar 

  43. 43.

    V. Meunier, Ph. Lambin, and A. A. Lucas, Phys. Rev. B 57, 14886 (1998); S. Berber, Y.-K. Kwon, and D. Tomanek, Phys. Rev. B 62, R2291 (2000); J.-C. Charlier and G.-M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001).

    Article  Google Scholar 

  44. 44.

    E. Pasqualini, Phys. Rev. B 56, 7751 (1997).

    CAS  Article  Google Scholar 

  45. 45.

    N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992); R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).

    Article  Google Scholar 

  46. 46.

    M. S. Ferreira, T. G. Dargam, R. B. Muniz, and A. Latge, Phys. Rev. B 63, 245111 (2001).

    Article  Google Scholar 

  47. 47.

    I. A. Luk’yanchuk and Y. Kopelevich, Phys. Rev. Lett. 93, 166402 (2004).

    Article  Google Scholar 

  48. 48.

    R. Tamura, M. Ikuta, T. Hirahara, and M. Tsukuda, cond-mat/0407749.

  49. 49.

    R. Tao and F. D. M. Haldane, Phys. Rev. B 33, 3844 (1986); X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377(1990).

  50. 50.

    T. L. Makarova, B. Sundqvist, R. Höhne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, Nature 413, 716 (2001); ibid. Nature 436, 1200 (2005).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sanju Gupta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gupta, S., Saxena, A. Novel Nanocarbons: Global Topology and Curvature Perspectives. MRS Online Proceedings Library 960, 906 (2006).

Download citation