Abstract
Carbon nanotubes (both the single- and multi-walled), in the family of nanostructured carbons, are of great interest because of several unsurpassable physical properties and it needs to be shown that they are physically stable and structurally unaltered when subjected to radiation. In addition to testing them for space applications, when exposed to high energy electron beam from transmission electron microscopy, the results seem quite promising in terms of nano-engineering/ nano-manufacturing for producing novel nanocarbons [1-3]. Experimental studies of effects of electron beam irradiation on carbon nanotubes show that multi-walled ones tend to be relatively more robust than their single-walled kins. The increased exposure on an individual bundle of single-wall nanotubes promoted graphitization, pinching, and cross-linking analogous to polymers forming an intra-molecular junction (IMJ) within the area of electron beam focus, possibly through aggregates of amorphous carbon [2,3]. Formation of novel nanostructures (nano-ring and helix-like) due to irradiation are observed. These studies shed light on the dynamics of nanomanufacturing and a regime of possible relevance of these materials for: (i) short-term space missions; (ii) radiation hard programmable logic circuits; and (iii) radiation pressure sensors. It is suggestive that a local reorganization occurs. Through resonance Raman spectroscopy and related techniques we also elucidate an important notion of global topology and curvature at nanoscale which points to an emergent paradigm of Curvature/Topology → Property → Functionality in these technologically important geometries of carbons: nanotubes, fullerenes, nanorings, nanocones, nanohorns and nanodisks. To this end, we have determined the variation in first order high frequency Raman band which indicates a strong electron-phonon coupling. These concepts also apply to nanostructures of other “topological materials” such as BN nanotubes and nanotori, helical gold nanotubes as well as Möbius conjugated polymers.
This is a preview of subscription content, access via your institution.
References
- 1.
H. W. Kroto, J. R. Heath, S. C. B’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985); W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature 347, 354 (1990).
- 2.
R. F. Curl and R. E. Smalley, Sci. Amer. 265, 32 (1991).
- 3.
S. Iijima, Nature 354, 56 (1991).
- 4.
K. Sattler, Carbon 33, 915 (1995).
- 5.
J.-C. Charlier and G.-M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001).
- 6.
A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, and T. W. Ebbesen, Nature 388, 451 (1997); T. W. Ebbesen, Acc. Chem. Res. 31, 558 (1998).
- 7.
R. Martel, H. R. Shea, and P. Avouris, Nature 398, 299 (1999).
- 8.
M. Sano, A. Kamino, J. Okamura, and S. Shinkai, Science 293, 1299 (2001).
- 9.
D.-H. Oh, J. M. Park, and K. S. Kim, Phys. Rev. B 62, 1600 (2000).
- 10.
W. A. de Heer and D. Ugarte, Chem. Phys. Lett. 207, 480 (1993).
- 11.
A. Rubio, J. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5081 (1994); X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett. 28, 335 (1994).
- 12.
N. G. Chopra, R. J. Luyken, K. Cherrey, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science 269, 966 (1995); L. Loiseau, F. Willaime, N. Demoncy, G. Hug, and H. Pascard, Phys. Rev. Lett. 76, 4737 (1996).
- 13.
Y. Oshima, A. Onga, and K. Takayanagi, Phys. Rev. Lett. 91, 205503 (2003).
- 14.
S. Tanda et. al., Nature 417, 397 (2002).
- 15.
D. Ajami et. al., Nature 426, 819 (2003).
- 16.
K. Harigaya, J. Phys. Soc. Jpn. 74, 523 (2005). % cond-mat/0412309.
- 17.
Y. Hong, N. Coombs, and G. A. Ozin, Nature 386, 692 (1997).
- 18.
L. W. Hobbs, C. E. Jesurum. V. Pulim, and B. Berger, Phil. Mag. A 78, 679 (1998).
- 19.
X. Michalet and D. Bensimon, Science 269,666 (1995); X. Michalet, D. Bensimon, and B. Fourcade, Phys. Rev. Lett. 72, 168 (1994).
- 20.
M. Karlsson, K. Sott, M. Davidson, A.-S. Cans, P. Linderholm, D. Chiu, and O. Orwar, Proc. Nat. Acad. Sci. 99, 11573 (2002).
- 21.
Thinking Topologically about Photochemistry in Restricted Spaces, N. J. Turro and M. Garcia-Garibay in Chapt. 1, pp.1 of Photochemistry in Organized and Constrained Media, ed. V. Ramamurthy (VCH Publishers, New York, 1991).
- 22.
M. Nakahara, Geometry, Topology and Physics, Graduate Student Series in Physics (Adam Hilger, Bristol, 1990).
- 23.
P. J. F. Harris, R. D. Vis, and D. Heymann, Earth Planet. Sci. Lett. 183, 355 (2000).
- 24.
D. Heymann, L. W. Jenneskens, J. Jehlicka, C. Koper, and E. Vlietstra, Fullerenres Nanotubes Carbon Nanostr. 11, 333 (2003).
- 25.
E. Dujardin, T. Thio, H. Lezec, and T. W. Ebbesen, Appl. Phys. Lett. 79, 2474 (2001).
- 26.
S. B. Sinnott and R. Andrews, Crit. Rev. Solid State Mater. Sci. 26, 145 (2001).
- 27.
R. T. Senger, S. Dag, and S. Ciraci, cond-mat/0410363; T. Ono and K. Hirose, cond-mat/0409721.
- 28.
T. W. Ebbesen and T. Takada, Carbon 33, 973 (1995).
- 29.
V. H. Crespi, Phys. Rev. B 58, 12671 (1998).
- 30.
C. K. Haluska, W. T. Gozdz, H.-G. Döbereiner, S. Förster, and G. Gompper, Phys. Rev. Lett. 89, 238302 (2002).
- 31.
D. J. Hombacker, S.-J. Kahng, S. Misra, B. W. Smith, A. T. Johnson, E. J. Mele, D. E. Luzzi, and A. Yazdani, Science 295, 828 (2002).
- 32.
S. Bandow, T. Hiraoka, T. Yumura, K. Hirahara, H. Shinohara, and S. Iijima, Chem. Pl Figure 3. 320 (2004).
- 33.
K. Sasaki, Y. Kawazoe, and R. Saito, Phys. Lett. A 321, 369 (2004).
- 34.
P. R. Bandaru, C. Daraio, S. Jin, and A. M. Rao, Nature Mater. 4, 663 (2005); H. Xu, Nature Mater. 4, 649 (2005).
- 35.
P. R. Gill, W. Murray, and M. H. Wright, The Levenberg-Marquardt Method, Sec. 4.7.3 in Practical Optimization, (Academic Press, London, 1981), pp.136–137.
- 36.
X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Phys. Rev. Lett. 72, 1878 (1994).
- 37.
A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. Smalley, G. Dresselhaus, and M. S. Dresselhaus, Science 275, 187 (1997).
- 38.
C. Thomsen and S. Reich, Phys. Rev. Lett. 85, 5214 (2000).
- 39.
M. Fanti, G. Orlandi, and F. Zerbetto, J. Phys. B 29, 5065 (1996).
- 40.
Fullerene and Fullerene Polymer Composites, edited by P.C. Eklund and A. M. Rao (Springer-Verlag, Berlin, 1999).
- 41.
H. Wang, M. Chhowalla, N. Sano, S. Jia, and G. A. J. Amaratunga, Nanotechnology 15, 546 (2004)
- 42.
P. Tan, S. Dimovski, and Y. Gogotsi, Phil. Trans. R. Soc. Lond. A 362, 2289 (2004).
- 43.
V. Meunier, Ph. Lambin, and A. A. Lucas, Phys. Rev. B 57, 14886 (1998); S. Berber, Y.-K. Kwon, and D. Tomanek, Phys. Rev. B 62, R2291 (2000); J.-C. Charlier and G.-M. Rignanese, Phys. Rev. Lett. 86, 5970 (2001).
- 44.
E. Pasqualini, Phys. Rev. B 56, 7751 (1997).
- 45.
N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992); R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).
- 46.
M. S. Ferreira, T. G. Dargam, R. B. Muniz, and A. Latge, Phys. Rev. B 63, 245111 (2001).
- 47.
I. A. Luk’yanchuk and Y. Kopelevich, Phys. Rev. Lett. 93, 166402 (2004).
- 48.
R. Tamura, M. Ikuta, T. Hirahara, and M. Tsukuda, cond-mat/0407749.
- 49.
R. Tao and F. D. M. Haldane, Phys. Rev. B 33, 3844 (1986); X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377(1990).
- 50.
T. L. Makarova, B. Sundqvist, R. Höhne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, Nature 413, 716 (2001); ibid. Nature 436, 1200 (2005).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gupta, S., Saxena, A. Novel Nanocarbons: Global Topology and Curvature Perspectives. MRS Online Proceedings Library 960, 906 (2006). https://doi.org/10.1557/PROC-0960-N09-06
Received:
Accepted:
Published: