Self-Assembly of Semiconductor Quantum Dots by Droplet Epitaxy


We have proposed a novel self-assembling growth method, termed Droplet Epitaxy, for the direct formation of QDs without using any lithography in 1990. Compared with the island formation based on the Stranski-Krastanow growth mode, the Droplet Epitaxy is applicable to the formation of quantum dots not only in lattice-mismatched but also in lattice-matched systems such as GaAs/AlGaAs. The process of the Droplet Epitaxy in MBE chamber consists of forming numerous III-column element droplets such as Ga or InGa with homogeneous size of around 10 nm on the substrate surface first by supplying their molecular beams, and then reacting the droplets with As molecular beam to produce GaAs or InGaAs epitaxial microcrystals.

Another advantage of the Droplet Epitaxy is the possibility of the fabrication of QDs structures without wetting layer by cotrolling the stoichiometry of the substrate surface just before the deposition of III-column element droplets.

Also we can control the shape of the QDs structure self-organizingly such as pyramidal shape, single-ring shape and concentric double-ring shape. These ring structures will provide excellent possibilities for the investigation of quantum topological phenomena.

This is a preview of subscription content, access via your institution.


  1. 1.

    W. J. Schaffer, M. D. Lind, S. P. Kowalczyk and W. Grant, J. Vac. Sci. & Technol. B1, 688 (1983).

    Article  Google Scholar 

  2. 2.

    B. F. Lewis, F. J. Grunthaner, A. Madhukar, R. Fernandez and J. Maserjian, J. Vac. Sci. & Technol. B2, 419 (1984).

    Article  Google Scholar 

  3. 3.

    R. A. A. Kubiak, E. H. C. Parker and S. Newstead, Appl. Phys. A 35, 61 (1984).

    Article  Google Scholar 

  4. 4.

    L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse and G. Le Roux, Appl. Phys. Lett. 47, 1099 (1985).

    CAS  Article  Google Scholar 

  5. 5.

    D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaas and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).

    CAS  Article  Google Scholar 

  6. 6.

    N. Koguchi, S. Takahashi and T. Chikyow, Proceed. 6th Int. Conf. MBE, La Jolla, 1990, J. Crystal Growth 111, 688 (1991).

    CAS  Article  Google Scholar 

  7. 7.

    J. Osaka, N. Inoue, Y. Mada, K. Yamada and K. Wada, J. Crystal Growth 99, 120 (1990).

    CAS  Article  Google Scholar 

  8. 8.

    T. Isu, M. Hata and A. Watanabe, J. Crystal Growth 111, 210 (1991).

    CAS  Article  Google Scholar 

  9. 9.

    T. Chikyow and N. Koguchi, Jpn. J. Appl. Phys. 29, L2093 (1990).

  10. 10.

    N. Koguchi and K. Ishige, Jpn. J. Appl. Phys. 32, 2052 (1993).

    CAS  Article  Google Scholar 

  11. 11.

    N. Koguchi, K. Ishige and S. Takahashi, J. Vac. Sci. & Technol. B11, 787 (1993).

    Article  Google Scholar 

  12. 12.

    T. Chikyow and N. Koguchi, Appl. Phys. Lett. 61, 2431 (1992).

    CAS  Article  Google Scholar 

  13. 13.

    K. Watanabe, N. Koguchi and Y. Gotoh, Jpn. J. Appl. Phys. 39, L79 (2000).

  14. 14.

    C. Deparis and J. Massies, J. Crystal Growth 108, 157 (1991) .

  15. 15.

    A. Ohtake and N. Koguchi, Appl. Phys. Lett. 83, 5193 (2003)

    CAS  Article  Google Scholar 

  16. 16.

    A. Ohtake, P.Kocan, K.Seino, W. G. Schmidt and N.Koguchi, Phys. Rev. Lett. 93, 266101 (2004).

    Article  Google Scholar 

  17. 17.

    S.Sanguinetti, K.Watanabe, T.Tateno, M.Gurioli, P.Werner M.Wakaki and N.Koguchi, J. Crystal Growth 253, 71 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    L. Daweritz and R. Hey, Surf. Sci. 236, 15 (1990).

    Article  Google Scholar 

  19. 19.

    C.D.Lee, C.Park, H.J.Lee, K.S.Lee, S.J.Park, C.G.Park, S.K.Noh and N.Koguchi, Jpn. J.Appl.Phys, 37, 7158 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    T.Mano and N.Koguchi, J.Crystal Growth 278, 108 (2005).

    CAS  Article  Google Scholar 

  21. 21.

    T. Mano, T. Kuroda, S. Sanguinetti, T. Ochiai T. Tateno, J. S. Kim, T. Noda, M. Kawabe,K. Sakoda, G. Kido and N. Koguchi, Nano Letters 5, 3, 425–428 (2005)

  22. 22.

    T.Kuroda, T.Mano, T.Ochiai, S.Sanguinetti, K.Sakoda, G.Kido and N.Koguchi, Phys.Rev. B72, 205301 (2005).

    Article  Google Scholar 

  23. 23.

    Z.M.Wang, K.Holms, J.L.Shults and G.J.Salamo, Physca Status Solidi, (a) 202, R85 (2005).

  24. 24.

    M.Yamagiwa, T.Mano, T.Kuroda, T.Tateno, K.Sakoda, G.Kido and N.Koguchi, Appl. Phys. Lett, 89, 113115 (2006).

    Article  Google Scholar 

  25. 25.

    T. Mano, K. Watanabe, S. Tsukamoto, H. Fujioka, M. Oshima and N. Koguchi, Jpn. J. Appl. Phys. 38, L1009 (1999).

  26. 26.

    J.S.Kim and N.Koguchi, Appl.Phys. Lett, 85, 5893 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    T.Mano, T.Kuroda, M.Yamagiwa, G.Kido, K.Sakoda and N.Koguchi, Appl. Phys. Lett, 89, 183102 (2006).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Nobuyuki Koguchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koguchi, N. Self-Assembly of Semiconductor Quantum Dots by Droplet Epitaxy. MRS Online Proceedings Library 959, 1801 (2006).

Download citation