Formation of a Thermally Stable NiSi FUSI Gate Electrode by a Novel Integration Process

Abstract

Nickel silicide is promising to be the choice material as contact to the source, drain, and gate for sub-65 nm and 45 nm CMOS devices. However, the thermal stability of NiSi is worse as the high resistivity phase of NiSi2 nucleates at about 750 °C and film agglomeration occurs even at a temperature as low as 600 °C. The process integration issues and formation thermally stable NiSi are needed to be understood and addressed. In order to obtain a thermally stable Ni-FUSI gate electrode, we introduced a novel integration process by using a two-step anneal process associating with properly tuned thickness of the initial Ni film and implant BF2 atoms during the poly-gate formation. As results, push the transformation of NiSi2 to a higher temperatures at about 900 °C. Several measurement techniques such as XRD, TEM, SEM and Resistivity are carried out to demonstrate its physical and electrical properties.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    The International Technology Roadmap for Semiconductors, 2005.

  2. 2.

    C.Hobbs et al., VLSI Symp. Tech. Dig., p. 9(2003).

  3. 3.

    K. Shiraishi et al., VLSI Symp. Tech. Dig., p. 108(2004).

  4. 4.

    H. Iwai, T. Ohgura, S. Ohmi, Microelectron. Eng. 60 (2002) 157.

    CAS  Article  Google Scholar 

  5. 5.

    A. Hokazono, K. Ohuchi, M. Takayanagi, Y. Watanabe, S. Magoshi, Y. Kato, T. Shimizu, et al., IEDM Tech. Dig. (2002) 639.

  6. 6.

    J.P. Lu, D. Miles, J. Zhao, A. Gurba, Y. Xu, C. Lin, M. Hewson, et al., IEDM Tech. Dig. (2002) 371.

  7. 7.

    A. Lauwers, A. Steegen, M. de potter, R. Lindsay, A. Satta, H. Bender, K. Maex, J. Vac. Sci. Technol., B 19 (2001) 2026.

    CAS  Article  Google Scholar 

  8. 8.

    A. Lauwers, M. de Potter, O. Chamirian, R. Lindsay, C. Demeurisse, C. Vrancken, K. Maex, Microelectron. Eng. 64 (2002) 131.

    CAS  Article  Google Scholar 

  9. 9.

    K.L Pey, P.S. Lee, D. Mangelinck, Thin Solid Films 462–463 (2004) 137.

    Article  Google Scholar 

  10. 10.

    A.S. Wang, D.Z. Chi, M. Loomans, D. Ma, M.Y. Lai, W.C. Tjiu, S.J. Chua, Appl. Phys. Lett. 81 (2002) 5138.

    Article  Google Scholar 

  11. 11.

    F. Heurle, C.S. Petersson, J.E.E. Baglin, S.J. Placa, C.Y. Wong, J. Appl. Phys. 55 (1984) 4208.

    Article  Google Scholar 

  12. 12.

    J.A. Kittl, A. Lauwers, O. Chamirian, M.A. Pawlak, M. Van Dal, A. Akheyar, M. De Potter, A. Kottantharayil, G. Pourtois, R. Lindsay, K. Maex, Mater. Res. Soc., Symp. Proc. 810 (2004) 31.

    CAS  Article  Google Scholar 

  13. 13.

    C. Lavoie, F.M. d’Heurle, C. Detavernier, C. Cabral Jr., Microelectron. Eng. 70 (2003) 144.

    CAS  Article  Google Scholar 

  14. 14.

    J.A. Kittl, A. Lauwers, M.A. Pawlak, M. Van Dal, A. Veloso, K.G. Anil, G. Pourtois, C. Demeurisse, T. Schram, B. Brijs, M. De Potter, C. Vrancken, K. Maex, Microelectron. Eng. 82 (2005) 441.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shiang Yu Tan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tan, S.Y., Chiu, HC. & Hu, CY. Formation of a Thermally Stable NiSi FUSI Gate Electrode by a Novel Integration Process. MRS Online Proceedings Library 958, 608 (2006). https://doi.org/10.1557/PROC-0958-L06-08

Download citation