Advances in SiGeSn/Ge Technology

Abstract

We recently reported the CVD growth of binary Ge1−ySny and ternary Ge1−ySixSny alloys directly on Si wafers using SnD4, Ge2H6 (di-germane), SiH3GeH3, and (GeH3)2SiH2 sources. Ge1−ySny is an intriguing infrared material that undergoes an indirect-to-direct bandgap transition for y ≥ 0.09. In addition, we have found that Ge1−ySny layers have ideal properties as templates for the subsequent deposition of other semiconductors: (a) they are strain-relaxed and have low threading-defect densities (105 cm−2) even for films thinner than 1 μm; (b) their low growth temperatures between 250°C and 350°C are compatible with selective growth, and the films possess the necessary thermal stability for conventional semiconductor processing (up to 750°C depending on composition); (c) they exhibit tunable lattice constants between 5.65 Å and at least 5.8 Å, matching InGaAs and related III-V systems; (d) their surfaces are extremely flat; (e) they grow selectively on Si and not on SiO2; and (f) the film surface can be prepared by simple chemical cleaning for subsequent ex-situ epitaxy. The incorporation of Sn lowers the absorption edges of Ge. Therefore, Ge1−ySny is attractive for detector and photovoltaic applications that require band gaps lower than that of Ge. Spectroscopic ellipsometry and photoreflectance experiments show that the direct band gap is halved for as little as y = 0.15. Studies of a Ge0.98Sn0.02 sample yield an absorption coefficient of 3500 cm−1 at 1675 nm (0.74 eV). Thus infrared detectors based on Ge0.98Sn0.02 could easily cover the U-(1565 nm-1625 nm), L-(1565 nm-1625 nm), and C-(1530 nm-1565 nm) telecomm bands. Photoluminescence studies show bandgap emission on thin GeSn layers sandwiched between higher bandgap SiGeSn barriers. We have made advances in p and n doping of GeSn and present results on electrical characterizations. GeSn also has application in band-to-band laser heterodiodes. The ternary system Ge1−x−ySixSny grows on Ge1−ySny-buffered Si. It represents the first practical group-IV ternary alloy, since C can only be incorporated in minute amounts to the Ge-Si network. The most significant feature of Ge1−x−ySixSny is the possibility of independent adjustment of lattice constant and band gap. For the same value of the lattice constant one can obtain band gaps differing by more than 0.2 eV, even if the Sn-concentration is limited to the range y < 0.2. This property can be used to develop a variety of novel devices, from multicolor detectors to multiple junction photovoltaic cells. A linear interpolation of band gaps lattice constants between Si, Ge and α-Sn shows that it is possible to obtain SiGeSn with a band gap and a lattice constant larger than that of Ge. We shall use this feature to make a tensile-strained Ge-on-SiGeSn telecomm detector with improved performance. The tensile-strain-induced direct gap of Ge can be used also for laser diodes and electroptical modulators.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. R. Bauer, J. Taraci, J. Tolle A.V.G Chizmeshya, S. Zollner, J. Menendez, D. J. Smith and J. Kouvetakis, Applied Physics Letters 81, 2992–2994 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    J. Kouvetakis, J. Menendez, and A.V.G Chizmeshya, Annual Reviews of Materials Research 36, 497–554 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    R. Roucka, J. Tolle, C. Cook, V.J. Costa, A.V.G Chizmeshya, J. Menendez, S. Zollner, and J. Kouvetakis, Applied Physics Letters 86(19), 191912/1-191912/3, (2005).

    CAS  Article  Google Scholar 

  4. 4.

    M. R. Bauer, J. Kouvetakis, D.J. Smith and J. Menendez, Solid State Communications 127, 355–359, (2003).

    CAS  Article  Google Scholar 

  5. 5.

    V. D’Costa, C. Cook, A.G. Birdwell, C. A. Littler, S. Zollner J. Kouvetakis and Jose Menendez, Physical Review B 73, 125207(1–16) (2006).

    Google Scholar 

  6. 6.

    C. Ritter, J. Tolle, V. D’Costa, J. Menendez, A. Chizmeshya and John Kouvetakis, Chemistry of Materials, in press, (2006).

  7. 7.

    P. Aella, C. Cook, J. Tolle, S. Zollner, A.V.G. Chizmeshya and J. Kouvetakis, Applied Physics Letters 84, 888–890, (2004).

    CAS  Article  Google Scholar 

  8. 8.

    J. Tolle, R. Roucka, V. D’Costa, J. Menendez, A. Chizmeshya and J. Kouvetakis, Applied Physics Letters, 88(25), 252112/1-252112/3, (2006).

    CAS  Article  Google Scholar 

  9. 9.

    V. R. D’Costa, Candi S. Cook, José Menéndez, J. Tolle, J. Kouvetakis and S. Zollner, Solid State Communications, 138(6), 309–313 (2006).

    Article  Google Scholar 

  10. 10.

    Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, and L. C. Kimerling, Applied Physics Letters 82, 2044 (2003).

    CAS  Article  Google Scholar 

  11. 11.

    J. Menendez and J. Kouvetakis, Applied Physics Letters 85(7) 1175–1177 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    R Soref, J. Kouvetakis, and J. Menendez, US Patent 6,897,471 (2005).

    Google Scholar 

  13. 13.

    J. Tolle, Vijay D’Costa, A. Chizmeshya, Peter Crozier, Jose Menendez, and John Kouvetakis Applied Physics Letters, in press (2006).

  14. 14.

    R. Roucka, J. Tolle, Vijay D’Costa, Jose Menendez, and John Kouvetakis Journal of Applied Physics, in press (2006).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard Soref.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Soref, R., Kouvetakis, J. & Menendez, J. Advances in SiGeSn/Ge Technology. MRS Online Proceedings Library 958, 108 (2006). https://doi.org/10.1557/PROC-0958-L01-08

Download citation