Skip to main content
Log in

Electrical Transport in Carbon Nanotube Y-junctions- a Paradigm for Novel Functionality at the Nanoscale

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Carbon Nanotube (CNT) morphologies with a self-contained gate, such as Y-junctions, offer a new way of exploiting the features unique to the nanoscale, such as quantum ballistic transport. The advantages of low power and high frequency operation can then be applied to the fabrication of novel devices. Several other novel functionalities in Y- CNTs, including rectification, switching, high-frequency performance, and logic gates have been experimentally verified1. Y-CNT geometry dependent current blocking behavior, as a function of annealing temperature has also been observed. In view of the above observations, this paper proposes that Y-CNTs can be used for prototypical nanoelectronic components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. R. Bandaru, C. Daraio, S. Jin and A. M. Rao, Nature Materials, 4, 663, (2005)

    Article  CAS  Google Scholar 

  2. P. Avouris, Accounts of Chemical Research, 35, 1026, (2002)

    Article  CAS  Google Scholar 

  3. S. J. Tans, A. R. M. Verschueren and C. Dekker, Nature, 393, 49, (1998)

    Article  CAS  Google Scholar 

  4. J. Appenzeller, J. Knoch, R. Martel and V. Derycke, IEEE Tranactions on Nanotechnology, 1, 184, (2002)

    Article  Google Scholar 

  5. H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni and C. Dekker, Science, 293, 76, (2001)

    Article  CAS  Google Scholar 

  6. N. Gothard, C. Daraio, J. Gaillard, R. Zidan, S. Jin and A. M. Rao, Nanoletters, 4, 213, (2004)

    Article  CAS  Google Scholar 

  7. K. B. K. Teo, C. Singh, M. Chhowalla and W. I. Milne, Catalytic Synthesis of Carbon Nanotubes and Nanofibers, American Scientific Publishers, Stevenson Ranch, CA, (2004)

  8. L. Forro and C. Schonenberger, Physical properties of Multi-wall Nanotubes, 80, Springer-Verlag, Heidelberg, (2001)

  9. A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes and M. L. Simpson, Journal of Applied Physics, 97, 041301, (2005)

    Article  Google Scholar 

  10. V. Gopal, V. R. Radmilovic, C. Daraio, S. Jin, P. Yang and E. A. Stach, Nanoletters, 4, 2059, (2004)

    Article  CAS  Google Scholar 

  11. A. N. Andriotis, M. Menon, D. Srivastava and L. Chernozatonski, Phys Rev Lett, 87, 066802, (2001)

    Article  CAS  Google Scholar 

  12. I. Shorubalko, H. Q. Xu, P. Omling and L. Samuelson, Appl Phys Lett, 83, 2369, (2003)

    Article  CAS  Google Scholar 

  13. T. Palm and L. Thylen, J Appl Phys, 79, 8076, (1996)

    Article  CAS  Google Scholar 

  14. A. N. Andriotis, Appl Phys Lett, 79, 266, (2001)

    Article  CAS  Google Scholar 

  15. Y.-W. Son, J. Ihm, M. L. Cohen, S. G. Louie and H. J. Choi, arXiv:cond-mat/0511447, (2005)

  16. M. Beale and P. Mackay, Philosophical Magazine B, 65, 47, (1992)

    Article  CAS  Google Scholar 

  17. P. R. Bandaru, et al (manuscript in preparation)

  18. R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, 2, John Wiley, New York, (1986)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Daraio, C., Rao, A. et al. Electrical Transport in Carbon Nanotube Y-junctions- a Paradigm for Novel Functionality at the Nanoscale. MRS Online Proceedings Library 922, 1108 (2006). https://doi.org/10.1557/PROC-0922-U11-08

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0922-U11-08

Navigation