Electrical Transport in Carbon Nanotube Y-junctions- a Paradigm for Novel Functionality at the Nanoscale


Carbon Nanotube (CNT) morphologies with a self-contained gate, such as Y-junctions, offer a new way of exploiting the features unique to the nanoscale, such as quantum ballistic transport. The advantages of low power and high frequency operation can then be applied to the fabrication of novel devices. Several other novel functionalities in Y- CNTs, including rectification, switching, high-frequency performance, and logic gates have been experimentally verified1. Y-CNT geometry dependent current blocking behavior, as a function of annealing temperature has also been observed. In view of the above observations, this paper proposes that Y-CNTs can be used for prototypical nanoelectronic components.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


  1. 1.

    P. R. Bandaru, C. Daraio, S. Jin and A. M. Rao, Nature Materials, 4, 663, (2005)

    CAS  Article  Google Scholar 

  2. 2.

    P. Avouris, Accounts of Chemical Research, 35, 1026, (2002)

    CAS  Article  Google Scholar 

  3. 3.

    S. J. Tans, A. R. M. Verschueren and C. Dekker, Nature, 393, 49, (1998)

    CAS  Article  Google Scholar 

  4. 4.

    J. Appenzeller, J. Knoch, R. Martel and V. Derycke, IEEE Tranactions on Nanotechnology, 1, 184, (2002)

    Article  Google Scholar 

  5. 5.

    H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni and C. Dekker, Science, 293, 76, (2001)

    CAS  Article  Google Scholar 

  6. 6.

    N. Gothard, C. Daraio, J. Gaillard, R. Zidan, S. Jin and A. M. Rao, Nanoletters, 4, 213, (2004)

    CAS  Article  Google Scholar 

  7. 7.

    K. B. K. Teo, C. Singh, M. Chhowalla and W. I. Milne, Catalytic Synthesis of Carbon Nanotubes and Nanofibers, American Scientific Publishers, Stevenson Ranch, CA, (2004)

  8. 8.

    L. Forro and C. Schonenberger, Physical properties of Multi-wall Nanotubes, 80, Springer-Verlag, Heidelberg, (2001)

  9. 9.

    A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H. Lowndes and M. L. Simpson, Journal of Applied Physics, 97, 041301, (2005)

    Article  Google Scholar 

  10. 10.

    V. Gopal, V. R. Radmilovic, C. Daraio, S. Jin, P. Yang and E. A. Stach, Nanoletters, 4, 2059, (2004)

    CAS  Article  Google Scholar 

  11. 11.

    A. N. Andriotis, M. Menon, D. Srivastava and L. Chernozatonski, Phys Rev Lett, 87, 066802, (2001)

    CAS  Article  Google Scholar 

  12. 12.

    I. Shorubalko, H. Q. Xu, P. Omling and L. Samuelson, Appl Phys Lett, 83, 2369, (2003)

    CAS  Article  Google Scholar 

  13. 13.

    T. Palm and L. Thylen, J Appl Phys, 79, 8076, (1996)

    CAS  Article  Google Scholar 

  14. 14.

    A. N. Andriotis, Appl Phys Lett, 79, 266, (2001)

    CAS  Article  Google Scholar 

  15. 15.

    Y.-W. Son, J. Ihm, M. L. Cohen, S. G. Louie and H. J. Choi, arXiv:cond-mat/0511447, (2005)

  16. 16.

    M. Beale and P. Mackay, Philosophical Magazine B, 65, 47, (1992)

    CAS  Article  Google Scholar 

  17. 17.

    P. R. Bandaru, et al (manuscript in preparation)

  18. 18.

    R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, 2, John Wiley, New York, (1986)

Download references

Author information



Corresponding author

Correspondence to Jeongwon Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, J., Daraio, C., Rao, A. et al. Electrical Transport in Carbon Nanotube Y-junctions- a Paradigm for Novel Functionality at the Nanoscale. MRS Online Proceedings Library 922, 1108 (2006). https://doi.org/10.1557/PROC-0922-U11-08

Download citation