Skip to main content
Log in

Chromatographic Separation of Single Wall Carbon Nanotubes

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Size exclusion chromatography (SEC) is shown to be an effective method to characterize single wall carbon nanotube (SWNT) dispersions. SEC separates nanotube dispersions by size, and measures the intrinsic viscosity on-line as a function of hydrodynamic size as is determined by Universal Calibration. This scaling contains information about the shape of the dispersed particles. This characterization method was tested on three representative dispersions: octadecyl amine functionalization in tetrahydrofuran (THF), butyl group functionalization in THF, and DNA wrapping in aqueous solution. Significant differences between the dispersions were found. Small angle neutron scattering (SANS) and atomic force microscopy (AFM) produced results consistent with the SEC method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference List

  1. Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787–792.

    Article  CAS  Google Scholar 

  2. Haddon, R. C.; Sippel, J.; Rinzler, A. G.; Papadimitrakopoulos, F. Mrs Bulletin 2004, 29, 252–259.

    Article  CAS  Google Scholar 

  3. Certain commercial equipment and materials are identified in this paper in order to specify adequately the experimental procedure. In no case does such identification imply recommendation by NIST nor does it imply that the material or equipment identified is necessarily the best available for this purpose.

  4. Ying, Y. M.; Saini, R. K.; Liang, F.; Sadana, A. K.; Billups, W. E. Organic Letters 2003, 5, 1471–1473.

    Article  CAS  Google Scholar 

  5. Bauer, B. J.; Hobbie, E. K.; Becker, M. L. Macromolecules 2006, 39, 2637–2642.

    Article  CAS  Google Scholar 

  6. Chattopadhyay, D.; Lastella, S.; Kim, S.; Papadimitrakopoulos, F. Journal of the American Chemical Society 2002, 124, 728–729.

    Article  CAS  Google Scholar 

  7. Huang, X. Y.; McLean, R. S.; Zheng, M. Analytical Chemistry 2005, 77, 6225–6228.

    Article  CAS  Google Scholar 

  8. Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Science 2003, 302, 1545–1548.

    Article  CAS  Google Scholar 

  9. Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nature Materials 2003, 2, 338–342.

    Article  CAS  Google Scholar 

  10. Duesberg, G. S.; Muster, J.; Krstic, V.; Burghard, M.; Roth, S. Applied Physics A-Materials Science & Processing 1998, 67, 117–119.

    Article  CAS  Google Scholar 

  11. Duesberg, G. S.; Blau, W.; Byrne, H. J.; Muster, J.; Burghard, M.; Roth, S. Synthetic Metals 1999, 103, 2484–2485.

    Article  CAS  Google Scholar 

  12. Farkas, E.; Anderson, M. E.; Chen, Z. H.; Rinzler, A. G. Chemical Physics Letters 2002, 363, 111–116.

    Article  CAS  Google Scholar 

  13. Holzinger, M.; Hirsch, A.; Bernier, P.; Duesberg, G. S.; Burghard, M. Applied Physics A-Materials Science & Processing 2000, 70, 599–602.

    Article  CAS  Google Scholar 

  14. Niyogi, S.; Hu, H.; Hamon, M. A.; Bhowmik, P.; Zhao, B.; Rozenzhak, S. M.; Chen, J.; Itkis, M. E.; Meier, M. S.; Haddon, R. C. Journal of the American Chemical Society 2001, 123, 733–734.

    Article  CAS  Google Scholar 

  15. Yang, Y. L.; Xie, L. M.; Chen, Z.; Liu, M. H.; Zhu, T.; Liu, Z. F. Synthetic Metals 2005, 155, 455–460.

    Article  CAS  Google Scholar 

  16. Zhao, B.; Hu, H.; Niyogi, S.; Itkis, M. E.; Hamon, M. A.; Bhowmik, P.; Meier, M. S.; Haddon, R. C. Journal of the American Chemical Society 2001, 123, 11673–11677.

    Article  CAS  Google Scholar 

  17. Heller, D. A.; Mayrhofer, R. M.; Baik, S.; Grinkova, Y. V.; Usrey, M. L.; Strano, M. S. Journal of the American Chemical Society 2004, 126, 14567–14573.

    Article  CAS  Google Scholar 

  18. Mori, S.; Barth, H. G. Size Exclusion Chromatography; Springer: Berlin, 1999.

  19. Grubisic, Z, Rempp, P., and Benoit, H. Journal of Polymer Science, Polymer Letters Edition 5, 753. 1967.

  20. Spatorico, A. L. and Coulter, B. Journal of Polymer Science, Polymer Physics Edition 11, 1139. 1973.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, B.J., Bajpai, V., Fagan, J.A. et al. Chromatographic Separation of Single Wall Carbon Nanotubes. MRS Online Proceedings Library 922, 901 (2006). https://doi.org/10.1557/PROC-0922-U09-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0922-U09-01

Navigation