Nanotubes in Low Temperature Spray Deposited Nanocrystalline HgSe: I thin films

Abstract

HgSe nanotubes have been prepared by spray deposition of solvothermally synthesized HgSe: Iodine nanoparticles on glass substrates at low temperature (200°C). Spray deposition was done without voltage and with an externally applied voltage (700V) to the nozzle and it is found from TEM studies that the average length of the nanotubes increases in case of the films deposited with applied voltage compared to that of without voltage. But there is no change in the average diameter (~ 35 nm). The nanotubes are found to have cubic crystal structure. Iodine is found to act as a catalyst and helps in the growth of nanotubes. The growth mechanism of the nanotubes is analogous to the well known solution-liquid-solid/vapor-liquid-solid (SLS/VLS) mechanism. The EDAX analysis of the tip of the nanotube reveals the presence of Hg, Se and Iodine in the ratio of 73:2:24 for the spot size of <1µm.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Y.Q. Zhu, T. Sekine, K.S. Brigatti, S. Firth, R. Tenne, R. Rosentsveig, H.W. Kroto and R.M. Walton, J. Am. Chem. Soc. 125, 1329 (2003).

    CAS  Article  Google Scholar 

  2. [2]

    A. Rothschild, S.R. Chohen, and R. Tenne, Appl. Phys. Lett 75, 4025 (1999).

    CAS  Article  Google Scholar 

  3. [3]

    C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, and M. Nath Chem. Physchem. 2, 78 (2001).

    CAS  Google Scholar 

  4. [4]

    B.C. Satishkumar, P.J. Thomas, A. Govindaraj and C.N.R. Rao, Appl. Phys. Lett. 77, 2530 (2000).

    CAS  Article  Google Scholar 

  5. [5]

    S. Iijima, Nature 354, 56 (1991).

    CAS  Article  Google Scholar 

  6. [6]

    R. Tenne, L. Margulis, M. Genut and G. Hodes, Nature 360, 444 (1992).

    CAS  Article  Google Scholar 

  7. [7]

    L. Margulis, G. Salltra, R. Tenne and M. Talianker, Nature 365, 144 (1993).

    Article  Google Scholar 

  8. [8]

    M. Remskar, A. Mrzel, A. Jesih and F. Levy, Adv. Mater. 14, 680 (2002).

    CAS  Article  Google Scholar 

  9. [9]

    Z.W. Pan, Z.R. Dai, and Z.L. Wang, Science 291, 1947 (2001).

    CAS  Article  Google Scholar 

  10. [10]

    J.R. Heath, P.J. Kuekes, G. Synder, and R.S. Williams, Science 280, 1717 (1998).

    Article  Google Scholar 

  11. [11]

    D. Snoke, Science 273, 1351 (1996).

    CAS  Article  Google Scholar 

  12. [12]

    C.N.R. Rao, F.L. Deepak, Gautam Gundiah, and A. Govindaraj, Progr. Solid State Chem. 31, 5 (2003).

    CAS  Article  Google Scholar 

  13. [13]

    A. RangaRao and V. Dutta, Phys. stat. sol. (a) 203, 854 (2006).

    CAS  Article  Google Scholar 

  14. [14]

    M. Law, J. Goldberger, and P. Yang, Ann. Rev. Mater. 34, 83 (2004).

    CAS  Article  Google Scholar 

  15. [15]

    R. Borah, N. Deka and J. Sarma, J. Chem. Res. (S), 110 (1997).

  16. [16]

    N. Deka, A.M. Mariotte and A. Boumendjel, Green Chemistry, 3, 263 (2001).

    CAS  Article  Google Scholar 

  17. [17]

    C.R. Whisett, J.G. Broerman and C. J. Summers 1981 Semiconductors and Semimetals vol. 16, ed R K Willardson and A C Beer (New York: Academic).

  18. [18]

    K. Singh and S.S.D. Mishra, J. Ind. Chem. Soc. 76, 104 (1999).

    CAS  Google Scholar 

  19. [19]

    G. Debais, Phys. stat. sol (a) 83, 269 (1984).

    Article  Google Scholar 

  20. [20]

    C. Zylberajch, A. Ruaudelteixier and A. Barraud, Thin Solid Films 179, 9 (1989).

    CAS  Article  Google Scholar 

  21. [21]

    Y.T. Park, S.G. Lee and Y.U. Kim, Int. J. Hydrogen Energy 20, 711 (1995).

    CAS  Article  Google Scholar 

  22. [22]

    A.T. Ding, J.R. Zhang, J.M. Hong, J.J. Zhu, and H.Y. Chen, J. Cryst. growth, 260, 527 (2004).

    CAS  Article  Google Scholar 

  23. [23]

    V.N Tondare, C. Balasubramanian, S.V. Shende, D.S. Joag, V.P. Godbole, S.V. Bhoraskar and M. Bhadbhade, Appl. Phys. Lett. 80, 4813 (2002).

  24. [24]

    H. Zhang, X. Yang Ma, Jin Xu, and D. Yang, J. Cryst. Growth, 263, 372 (2004).

    CAS  Article  Google Scholar 

  25. [25]

    j. Xu, Y. Zhao and Chunyun Zou, Chemical Physics Lett., 2006 (manuscript in press).

  26. [26]

    A. Ranga Rao and V. Dutta Phys. stat. sol (a) 201, R72 (2004).

  27. [27]

    K. Vamsi Krishna and V. Dutta, Thin Solid Films 444, 17 (2003).

    CAS  Article  Google Scholar 

  28. [28]

    Y.D. Li, J.W. Wang, Z.X. Deng, Y.Y. Wu, X.M. Sun, D.P. Yu, and P.D. Yang, J. Am. Chem. Soc, 123, 9904 (2001).

    CAS  Article  Google Scholar 

  29. [29]

    M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demsar, P. Stadelmann, F. Levy, and D. Mihailovic, Science 292, 479 (2001).

    CAS  Article  Google Scholar 

  30. [30]

    A. Ranga Rao and V. Dutta (manuscript under preparation).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ranga Rao Arnepalli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arnepalli, R.R., Dutta, V. Nanotubes in Low Temperature Spray Deposited Nanocrystalline HgSe: I thin films. MRS Online Proceedings Library 922, 209 (2006). https://doi.org/10.1557/PROC-0922-U02-09

Download citation