Analysis and Optimisation of New Implantation and Activation Mechanisms in Ultra Shallow Junction Implants Using Scanning Spreading Resistance Microscopy (SSRM)

Abstract

Within this paper we have demonstrated the unique capability of scanning spreading resistance microscopy (SSRM) in order to evaluate and optimize the recent approaches towards the formation of advanced p-MOS devices. As shown in this paper, such an optimization requires a detailed 2D-analysis on completely processed devices as two-dimensional interactions may cause (unexpected) lateral diffusion and (de) activation of underlying profiles. Emphasis will be on junction formation using Ge- pre-amorphization and carbon based cocktail implantation coupled with activation based on solid phase epitaxial regrowth and/or millisecond laser anneal. In the case of a Ge-pre-amorphization implant followed by solid phase epitaxial regrowth, SSRM shows an obvious relationship between the presence of defects in the end of range region and halo implant de-activation. Based on the quantified 2D-profiles we can extract the lateral and vertical junction depths as well as the lateral and vertical abruptness of the extension region. A drastic reduction of the lateral diffusion for the cocktail implant versus the standard reference devices with classical spike annealing is eminent. At the same an important reduction of the lateral diffusion of the source/drain implants (HDD) under the spacer can be seen. The SSRM results also highlight the impact of different activation mechanisms on the channel implants (in particular on the shape of the halo pockets).

This is a preview of subscription content, access via your institution.

References

  1. 1

    V. Moroz et al, Appl. Phys. Lett., vol.87, p.051908, 2005.

    Article  Google Scholar 

  2. 2

    C. M. Osburn et al, Ion Implantation Tech., p.832, 1996.

  3. 3

    K. Tsuji et al, IEDM Tech Dig, p.9, 1999.

  4. 4

    S. Severi et al, Proc. ULIS 2004, Leuven, p.69, 2004.

  5. 5

    S. H. Jain et al, IEEE Trans. on Elec. Dev., vol.52, Num.7, 2005.

  6. 6

    A. Shima et al, IEEE Trans. on Elec. Dev, vol.52, Num.6, 2005.

  7. 7

    P. De Wolf et al, J. Vac. Sci. Technol. B14, p.380, 1996.

    Article  Google Scholar 

  8. 8

    P. Eyben, T. Janssens and W. Vandervorst, Mat. Sci. & Eng. B, vol.124–125, p.45, 2005.

    Article  Google Scholar 

  9. 9

    P. De Wolf, T. Clarysse, and W. Vandervorst, J. Vac. Sci. Technol. B16(1), p.320, 1998.

    Article  Google Scholar 

  10. 10

    P. Eyben et al, AIP Conf. Proc. 683, p.685, 2003.

    CAS  Article  Google Scholar 

  11. 11

    T. Hantschel et al, Micr. Eng., vol.57–58, p.749, 2001.

    Article  Google Scholar 

  12. 12

    M. Fouchier et al, Proc. of SPIE 5116, p.607, 2003.

    CAS  Article  Google Scholar 

  13. 13

    R. Lindsay et al, Proc. Mat. Res. Soc. Symp. D, vol.765, 2003 .

  14. 14

    S. Severi, et al, Proc. IEDM, 2004.

  15. 15

    B. Pawlak et al, Submitted to APL.

  16. 16

    P. Eyben et al, J. Vac. Sci. Technol. B 20(1) p.471, 2002

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pierre Eyben.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eyben, P., Severi, S., Duffy, R. et al. Analysis and Optimisation of New Implantation and Activation Mechanisms in Ultra Shallow Junction Implants Using Scanning Spreading Resistance Microscopy (SSRM). MRS Online Proceedings Library 912, 508 (2005). https://doi.org/10.1557/PROC-0912-C05-08

Download citation