Development of PECVD SiC for MEMS Using 3MS as the Precursor

Abstract

This paper reports our effort to develop amorphous hydrogenated silicon carbide (a-SiC:H ) films specifically designed for MEMS applications using a semiconductor-grade organosilane known as trimethylsilane (3MS) as the precursor. In our work, the a-SiC:H films were deposited in a commercial PECVD system at a fixed temperature of 350˚C using 3MS diluted in helium (He). Films with thicknesses from ~ 100 nm to ~ 2μm, a typical range for MEMS applications, were deposited. Deposition parameters such RF power, deposition pressure, and 3MS-to-He ratio were explored to obtain films with low residual compressive stresses. Low temperature, post-deposition annealing at 450˚C was used to convert the as-deposited compressive residual stresses to moderate tensile stresses, which are desired for micromachined bridges, membranes and other anchored structures. Compositional analysis indicated that films with a Si-to-C ratio of 1 could be deposited under certain conditions. Mechanical properties such as Young’s modulus and fracture strength were derived from the load-deflection behavior of micromachined freestanding membranes. Nanoindentation was used to verify the Young’s modulus and determine the hardness. As expected, the films exhibit insulating properties with a relative dielectric constant at 3.90 for as-deposited films and 2.69 after annealing at 1100˚C, as determined from C-V measurements. Chemical inertness was tested in aqueous, corrosive solutions such as KOH and HNA. Prototype structures were fabricated using both surface micromachining and bulk micromachining techniques to demonstrate the potential of the a-SiC:H films for MEMS applications.

This is a preview of subscription content, access via your institution.

References

  1. 1

    M. Mehregany, C. A. Zorman, N. Rajan, and C. H. Wu, Proceedings of the IEEE 86, 1594-1609 (1998).

    CAS  Article  Google Scholar 

  2. 2

    C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, S. Nishino, and P. Pirouz, Journal of Applied Physics 78, 5136–5138 (1995).

    CAS  Article  Google Scholar 

  3. 3

    X.-A. Fu, J. L. Dunning, C. A. Zorman, and M. Mehregany, Sensors and Actuators A (Physical) 119, 169–76 (2005).

    CAS  Article  Google Scholar 

  4. 4

    S. F. Cogan, D. J. Edell, A. A. Guzelian, Y. P. Liu, and R. Edell, Journal of Biomedical Materials Research - Part A 67, 856–867 (2003).

    Article  Google Scholar 

  5. 5

    A. Berthold, F. Laugere, H. Schellevis, C. R. de Boer, M. Laros, R. M. Guijt, P. M. Sarro, and M. J. Vellekoop, Electrophoresis 23, 3511–19 (2002).

    CAS  Article  Google Scholar 

  6. 6

    A. Bagolini, L. Pakula, T. L. M. Scholtes, H. T. M. Pham, P. J. French, and P. M. Sarro, Journal of Micromechanics and Microengineering 12, 385–389 (2002).

    CAS  Article  Google Scholar 

  7. 7

    W. Zhang, M. Lelogeais, and M. Ducarroir, Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes 31, 4053–4060 (1992).

    CAS  Article  Google Scholar 

  8. 8

    M. J. Loboda, Microelectronic Engineering 50, 15–23 (2000).

    CAS  Article  Google Scholar 

  9. 9

    P. M. Sarro, Transducers ‘99: 10th International Conference on Solid State Sensors and Actuators A82, 210–18 (2000).

    Google Scholar 

  10. 10

    L. S. Pakula, H. Yang, H. T. M. Pham, P. J. French, and P. M. Sarro, Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 502–505 (2003).

    Google Scholar 

  11. 11

    M. J. Loboda, J. A. Seifferly, C. M. Grove, and R. F. Schneider, Materials Research Society Symposium Proceedings 447, 145–150 (1997).

    CAS  Article  Google Scholar 

  12. 12

    X.-a. Fu, J. L. Dunning, C. A. Zorman, and M. Mehregany, Thin Solid Films 492, 195–202 (2005).

    CAS  Article  Google Scholar 

  13. 13

    A. Kaushik, H. Kahn, and A. H. Heuer, Journal of Microelectromechanical Systems 14, 359–67 (2005).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Du, J., Singh, N., Summers, J.B. et al. Development of PECVD SiC for MEMS Using 3MS as the Precursor. MRS Online Proceedings Library 911, 528 (2005). https://doi.org/10.1557/PROC-0911-B05-28

Download citation