Role of the Oxide Layer on the Performances of a-Si:H Schottky Structures Applied to PDS Fabrication

Abstract

In this work we present results of studies performed on Schottky and metal-insulator – semiconductor (MIS) position sensitive detectors (PSD) structures: substrate (glass)/ Cr (300 nm) / a-Si:H [n] (37 nm) / a-Si:H [i] (600 nm) / SiO2 (1.5 nm – for the MIS) / Au (7 nm). The effect of the interfacial oxide layer between Au and a-Si:H, for the MIS structures, was studied and compared with the Schottky, in order to determine how beneficial it could be for device performances and time degradation. For doing so, the Au thickness of 70Å was deposited by thermal evaporation on an oxide free (Schottky) and oxidized (≈ 20Å) (MIS) a-Si:H surfaces. These structures were characterized by SIMS, RBS, SEM and AFM in order to correlate the obtained diffusion profile of Au at the interface and the topography with the presence of the oxide at the interface. The results show that the Au inter-diffuses very easily in the oxide free a-Si:H surface, even at room temperature, degrading the devices performance. On the other hand, the MIS structures, with their interfacial oxide present no structural changes after annealing and the PSD produced are stable. We believe that this effect is associated with the barrier effect of the interfacial oxide that prevents the Au diffusion. The optimized 1D MIS sensors are stable and exhibit a linearity error as low as 0.8 % and sensitivities of 33 mV/cm for a 5 mW spot beam intensity at a wavelength of 532 nm, while the Schottky sensors showed a time degradation of their characteristics.

This is a preview of subscription content, access via your institution.

References

  1. 1

    S. Akita, H. Ueda, Y. Nakayama, J. Appl. Phys. 77, 1120 (1995).

    CAS  Article  Google Scholar 

  2. 2

    S.M. Sze, Physics of Semiconductor Devices, Jonh Wiley, New York, cap. 13 (1981).

    Google Scholar 

  3. 3

    J.M. Poate, D.C. Jacobson, J.S. Williams, R.G. Elliman, D.O. Boerma, Nuclear Inst. and Methods in Physics Resc. B19–20, 480 (1987).

    Article  Google Scholar 

  4. 4

    N.A. Stolwijk, B. Schuster, J. Holzl, H. Mehrer, W. Frank, Physica B116, 335 (1983).

    Google Scholar 

  5. 5

    T. Hara, S. Enomoto, H. Yamamoto, T. Tsukada, J. of Non-Crystall. Solids 59–60, 521 (1983).

    Article  Google Scholar 

  6. 6

    H. Águas, A. Gonçalves, L. Pereira, R. Silva, E. Fortunato, R. Martins, Thin Solid Films 427, 345 (2003).

    Article  Google Scholar 

  7. 7

    E. Fortunato, P. Teodoro, V. Silva, I. Ferreira, Y. Nunes, N. Guimarães, F. Soares, F. Giuliani, G. Popovic, W. Brener and R. Martins. Phil. Mag. B, 80, 765 (2000).

    CAS  Article  Google Scholar 

  8. 7

    E. Fortunato, G. Lavareda, R. Martins, F. Soares, L. Fernandes, Sens. & Actuat. A51, 135 (1996).

    Google Scholar 

  9. 8

    S. Coffa, J. M. Poate, D.C. Jacobson, W. Frank, W. Gustin, Phys. Review B45, 8355 (1992).

    Article  Google Scholar 

  10. 9

    Akio Hiraki, Eriabu Lugujjo, and J.W. Mayer, J. Appl. Phys. 43, 3643 (1972).

    CAS  Article  Google Scholar 

  11. 10

    S.Y. Yoon, S.J. Park, K.H. Kim, J. Jang, Thin Solid Films 383, 34 (2001).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aguas, H., Pereira, L., Costa, D. et al. Role of the Oxide Layer on the Performances of a-Si:H Schottky Structures Applied to PDS Fabrication. MRS Online Proceedings Library 910, 1704 (2005). https://doi.org/10.1557/PROC-0910-A17-04

Download citation