Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays

Abstract

Organic light emitting diode (OLED) displays are a serious competitor to liquid crystal displays in view of their superior picture quality, higher contrast, faster on/off response, thinner profile, and high power efficiency. For large area and/or high-resolution applications, an active matrix OLED (AMOLED) addressing scheme is vital. The active matrix backplane can be made with amorphous silicon (a-Si), polysilicon, or organic technology, all of which suffer from threshold voltage (VT) shift and/or mismatch problems, causing temporal or spatial variations in the OLED brightness. In addition, the efficiency of the OLED itself degrades over time. Despite these shortcomings, there has been considerable progress in development of AMOLED displays using circuit solutions engineered to provide stable and uniform brightness. Indeed the design of AMOLED pixel circuits, particularly in low-mobility TFT technologies such as a-Si, is challenging due to the stringent requirements of timing, current matching, and low voltage operation. While circuit solutions are necessary, they are not sufficient. Process improvements to enhance TFT performance are becoming inevitable. This paper will review pertinent material requirements of AMOLED backplanes along with design considerations that address pixel architecture, contact resistance, and more importantly, the VT-stability and associated gate overdrive voltage, VGS-VT. In particular, we address the question of whether conventional PECVD can be deployed for high mobility and high VT-stability TFTs, and if micro-/nano-crystalline silicon could provide the solution.

This is a preview of subscription content, access via your institution.

References

  1. 1

    M. Hack, J.J. Brown, SID J. of Info. Display 18, 3, 16 (2002).

    Google Scholar 

  2. 2

    G. Gu and S.R. Forrest, IEEE J. of Selected Topics in Quantum Electronic, 4, 83 (1998).

    CAS  Article  Google Scholar 

  3. 3

    J.H. Jung et al. Dig. Tech. Papers of SID’05 36, , 538 (2005).

    Google Scholar 

  4. 4

    K.-H. Bock, Proc. IEEE 93, 1400 (2005).

    CAS  Article  Google Scholar 

  5. 5

    J. Blochwitz-Nimoth, J. Brandt, M. Hoffman, J. Birnstock, M. Pfeiffer, G. He, P. Wellmann, K.Leo, Dig. Tech. Papers of SID’04 35, 1000 (2004).

    CAS  Article  Google Scholar 

  6. 6

    A. Nathan et al., Dig. Tech. Papers of SID’04 35, 1508 (2004)..

    CAS  Article  Google Scholar 

  7. 7

    R.M.A. Dawson et al., Dig. Tech. Papers of SID’04 30, 438 (1999).

    Article  Google Scholar 

  8. 8

    A. Kumar, A. Nathan, G.E. Jabbour, IEEE Trans. Electron Devices 52, 2386 (2005).

    CAS  Article  Google Scholar 

  9. 9

    M.-H. Lu, M.S. Weaver, T.X. Zhou, M. Rothman, R.C. Kwong, M. Hack, J.J. Brown, Appl. Phys.Letts, 81, 3921(2002).

    CAS  Article  Google Scholar 

  10. 10

    T. Tsujimura et al., Dig. Tech. Papers of SID’03 34, 6(2003).

    CAS  Article  Google Scholar 

  11. 11

    J.J. Lih, C.F. Sung, M.S. Weaver, M. Hack, J.J. Brown, Dig. Tech. Papers of SID’03 4, 14 (2003).

    Article  Google Scholar 

  12. 12

    T. Chuman, S. Ohta, S.Miyaguchi, H.Satoh, T.Tanabe, Y.Okuda, M.Tsichida, Dig. Tech. Papers of SID’04 35, 45 (2004).

    CAS  Article  Google Scholar 

  13. 13

    D. Striakhilev, A. Nathan, P. Servati, Y. Vygranenko, C.H. Lee, A. Sazonov, IEEE J. of Display Tech. (2006), to appear.

    Google Scholar 

  14. 14

    R.A. Street, “Hydrogenated Amorphous Silicon”, (Cambridge University Press, 1991).

    Google Scholar 

  15. 15

    K.S. Karim, A. Nathan, M. Hack, W.I. Milne, IEEE Electron Device Letts. 25, 188 (2004).

    CAS  Article  Google Scholar 

  16. 16

    K. Sakariya, P. Servati, D. Striakhilev, A. Nathan in Electronics on Unconventional Substrates--Electrotextiles and Giant-Area Flexible Circuits, edited by M.S. Shur, P.M. Wilson and D. Urban (Mater. Res. Soc. Symp. Proc. 736, Warrendale, PA, 2002), publ.#D7.15.1.

  17. 17

    S. Jafarabadiashtiani, G. Chaji, S. Sambandan, D.Striakhilev, P. Servati, A. Nathan, Dig. Tech. Papers of SID’05 36, 316 (2005).

    CAS  Article  Google Scholar 

  18. 18

    M. J. Powell, C. van Berkel, and J. R. Hughes, Appl. Phys. Letts. 54, 1323 (1989).

    CAS  Article  Google Scholar 

  19. 19

    S.M. Jahinuzzaman, A. Sultana, K. Sakariya, P. Servati, and A. Nathan, App. Phys. Letts, 87,. 23502 (2005).

    Article  Google Scholar 

  20. 20

    K. Sakariya, P. Servati, and A. Nathan, IEEE Trans. on Electron Devices 51, 2019(2004).

    CAS  Article  Google Scholar 

  21. 21

    J.L. Sanford, F. Libsch, Tech. Papers of SID’03 34,. 10 (2003).

    Article  Google Scholar 

  22. 22

    A. Nathan, G.R. Chaji, and S.J. Ashtiani, IEEE J. of Display Tech. 1, 267 (2005).

    Article  Google Scholar 

  23. 23

    P. Servati, S. Tao, E. Horne, D. Striakhilev, A. Nathan in Flexible Electronics 2004-Materials and Device Technology, edited by N. Fruehauf, B. R. Chalamala, B. E. Gnade and J. Jang (Mater. Res. Soc. Symp. Proc. 814, Warrendale, PA, 2004) publ.#I6.13.1.

  24. 24

    S.O. Kasap, Principles of Electronic Materials and Devices, McGraw Hill, 2006.

    Google Scholar 

  25. 25

    K.M. Lim et al., Solid-State Electronics, 49 1107 (2005).

    CAS  Article  Google Scholar 

  26. 26

    S. Wagner, H.Gleskova, I-Chun Cheng, M. Wu, Thin Solid Films, 430, 15 (2003).

    CAS  Article  Google Scholar 

  27. 27

    J. Puigdollers et al., J. Non-Crystalline Solids 299–302 400 (2002).

    Article  Google Scholar 

  28. 28

    X.Y. Chen, W.Z. Shen, H. Chen, R. Zhang, and Y.L. He, Nanotechnology 17, 595 (2006).

    CAS  Article  Google Scholar 

  29. 29

    J. Seto, J. Appl. Phys., 46, 5247 (1975).

    CAS  Article  Google Scholar 

  30. 30

    C.H. Lee, A. Sazonov, and A. Nathan, Appl. Phys. Letts. 86, 222106 (2005).

    Article  Google Scholar 

  31. 31

    C.H. Lee, A.Sazonov, and A.Nathan, IEEE IEDM Tech. Dig., 915 (2005).

    Google Scholar 

  32. 32

    I. Cheng and S. Wagner, Appl. Phys. Lett. 80, 440 (2002) .

    CAS  Article  Google Scholar 

  33. 33

    S. Kasouit, P.Roca i. Cabarrocas, R. Vanderhaghen, Y. Bonnassieux, M. Elyaakoubi; I.D. French, J. Non-Crystalline Solids 338–340, 369 (2004).

    Article  Google Scholar 

  34. 34

    S. Kasouit, P.Roca .i. Cabarrocas, R. Vanderhaghen, Y. Bonnassieux, M. Elyaakoubi, I.D. French, Thin Solid Films 427, 67 (2004).

    Article  Google Scholar 

  35. 35

    C.H. Lee, D. Striakhilev, A. Nathan, J. Vac. Sci. Tech. A. 22, 991 (2004).

    CAS  Article  Google Scholar 

  36. 36

    C.H. Lee, D. Striakhilev, S. Tao, A. Nathan, IEEE Electron Device Letts 26, 637 (2005).

    CAS  Article  Google Scholar 

  37. 37

    C.H. Lee, D. Striakhilev, A. Nathan, IEEE Trans. on Electron Devices (2006), submitted.

  38. 38

    T. Matsui, A. Matsuda and M. Kondo in Amorphous and Nanocrystalline Silicon Science and Technology—2004, edited by G. Ganguly, M. Kondo, E. A. Schiff, R. Carius and R. Biswas (Mater. Res. Soc. Symp. Proc. 808 , Warrendale, PA ,2004) publ.#A8.1.1.

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nathan, A., Striakhilev, D., Chaji, R. et al. Backplane Requirements for Active Matrix Organic Light Emitting Diode Displays. MRS Online Proceedings Library 910, 901 (2005). https://doi.org/10.1557/PROC-0910-A16-01-L09-01

Download citation