Redistribution of Mn upon Annealing in Ferromagnetic Mn-implanted Si

Abstract

The redistribution of implanted Mn ions in Si after thermal annealing is studied. P-type Si wafers were implanted with 300-keV Mn+ ions at 350°C to a dose of 1×1015 cm-2, and then annealed at 800 °C for 5 min. Ferromagnetic hysteresis loops were obtained at 10 K using a SQUID magnetometer both before and after annealing. The saturation magnetization increases by ∼2 × after the post-implant annealing, while the Mn redistributes with sharp peaks in concentration. The calculated point-defect profile created during the implantation process peaks around the Mn-depleted region, suggesting that the residual implant damage may play a role in the ferromagnetic behavior of Mn-implanted Si.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    H. Ohno, Science 281, 951 (1998).

    CAS  Article  Google Scholar 

  2. [2]

    S. J. Pearton, C. R. Abernathy, D. P. Norton, A. F. Hebard, Y. D. Park, L. A. Boatner, and J. D. Budai, Mater. Sci. Eng. R Rep. R40, 137 (2003).

    Article  Google Scholar 

  3. [3]

    X. Chen, M. Na, M. Cheon, S. Wang, H. Luo, B. D. McCombe, X. Liu, Y. Sasaki, T. Wojtowicz, J. K. Furdyna, et al., Appl. Phys. Lett. 81, 511 (2002).

    CAS  Article  Google Scholar 

  4. [4]

    F. Tsui, L. He, L. Ma, A. Tkachuk, Y. S. Chu, K. Nakajima, and T. Chikyow, Phys. Rev. Lett. 91, 177203 (2003).

    CAS  Article  Google Scholar 

  5. [5]

    Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science 295, 651 (2002).

    CAS  Article  Google Scholar 

  6. [6]

    S. Cho, S. Choi, S. C. Hong, Y. Kim, J. B. Ketterson, B.-J. Kim, Y. C. Kim, and J.-H. Jung, Phys. Rev. B 66, 033303 (2002).

    Article  Google Scholar 

  7. [7]

    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    CAS  Article  Google Scholar 

  8. [8]

    M. Berciu and R. N. Bhatt, Phys. Rev. Lett. 87, 107203 (2001).

    CAS  Article  Google Scholar 

  9. [9]

    P. J. Wellmann, J. M. Garcia, J. L. Feng, and P. M. Petroff, Appl. Phys. Lett. 71, 2532 (1997).

    CAS  Article  Google Scholar 

  10. [10]

    Y. D. Park, A. Wilson, A. T. Hanbicki, J. E. Mattson, T. Ambrose, G. Spanos, and B. T. Tonker, Appl. Phys. Lett. 78, 2739 (2001).

    CAS  Article  Google Scholar 

  11. [11]

    N. Theodoropoulou, A. F. Hebard, M. E. Overberg, C. R. Abernathy, and S. J. Pearton, Phys. Rev. Lett. 89, 107203 (2002).

    CAS  Article  Google Scholar 

  12. [12]

    A. F. Hebard, R. P. Rairigh, J. G. Kelly, S. J. Pearton, C. R. Abernathy, S. N. G. Chu, and R. G. Wilson, J. Phys. D; Appl. Phys. (UK) 37, 511 (2004).

    CAS  Article  Google Scholar 

  13. [13]

    J. S. Williams, Mater. Sci. Eng. A A253, 8 (1998).

    CAS  Article  Google Scholar 

  14. [14]

    S. O. Kucheyev, J. S. Williams, and S. J. Pearton, Mater. Sci. Eng. R Rep. R33, 51 (2001).

    Article  Google Scholar 

  15. [15]

    A. Serres, M. Respaud, G. Benassayag, C. Armand, J. C. Pesant, A. Mari, Z. Lifiental-Weber, and A. Claverie, Physica E 17, 371 (2003).

    CAS  Article  Google Scholar 

  16. [16]

    J. Shi, J. M. Kikkawa, D. D. Awschalom, G. Medeiros-Ribeiro, P. M. Petroff, and K. Babcock, J. Appl. Phys. 79, 5296 (1996).

    CAS  Article  Google Scholar 

  17. [17]

    C. Chen, M. Cai, X. Wang, S. Xu, M. Zhang, X. Ding, and Y. Sun, J. Appl. Phys. 87, 5636 (2000).

    CAS  Article  Google Scholar 

  18. [18]

    N. Theodoropoulou, A. F. Hebard, S. N. G. Chu, M. E. Overberg, C. R. Abernathy, S. J. Pearton, R. G. Wilson, and J. M. Zavada, J. Appl. Phys. 91, 7499 (2002).

    CAS  Article  Google Scholar 

  19. [19]

    M. E. Overberg, B. P. Gila, G. T. Thaler, C. R. Abernathy, S. J. Pearton, N. A. Theodoropoulou, K. T. McCarthy, S. B. Arnason, A. F. Hebard, S. N. G. Chu, et al., J. Vac. Sci. Technol. B 20, 969 (2002).

    CAS  Article  Google Scholar 

  20. [20]

    H. H. Woodbury and G. W. Ludwig, Phys. Rev. 117, 102 (1960).

    CAS  Article  Google Scholar 

  21. [21]

    M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. G. Ramos, G. Agnello, and V. P. LaBella, Phys. Rev. B 71, 033302 (2005).

    Article  Google Scholar 

  22. [22]

    M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. Ramos, and V. P. LaBella, Nucl. Instrum. Methods Phys. Res. B 0, (in press) (2005).

  23. [23]

    L. Liu, N. Chena, S. Songa, Z. Yina, F. Yanga, C. Chaia, S. Yanga, and Z. Liua, J. Cryst. Growth 273, 458 (2005).

    CAS  Article  Google Scholar 

  24. [24]

    M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M. B. Huang, F. Ramos, G. Agnello, and V. P. LaBella, Mater. Res. Soc. Symp. Proc. 853E, 4 (2005).

    Google Scholar 

  25. [25]

    M. Bolduc, C. Awo-Affouda, F. Ramos, and V. P. LaBella, J. Vac. Sci. Technol. B 00, (submitted 9/2005) (2006).

  26. [26]

    C. Awo-Affouda, M. Bolduc, M. B. Huang, F. Ramos, K. A. Dunn, B. Thiel, G. Agnello, and V. P. LaBella, J. Vac. Sci. Technol. B 00, (submitted 9/2005) (2006).

  27. [27]

    D. Kwon, H. K. Kim, J. H. Kim, Y. E. Ihm, D. Kim, H. Kim, J. S. Baek, C. S. Kim, and W. K. Choo, J. Magn. Magn. Mater. 282, 240 (2004).

    CAS  Article  Google Scholar 

  28. [28]

    A. Sulpice, U. Gottlieb, M. Affronte, and O. Laborde, J. Magn. Magn. Mater. 272–276, 519 (2004).

    Article  Google Scholar 

  29. [29]

    U. Gottlieb, A. Sulpice, B. Lambert-Andron, and O. Laborde, J. Alloys Compounds 361, 13 (2003).

    CAS  Article  Google Scholar 

  30. [30]

    M. Yamada, T. Goto, and T. Kanomata, J. Alloys Compounds 364, 37 (2004).

    CAS  Article  Google Scholar 

  31. [31]

    R. Bader and S. Kalbitzer, Appl. Phys. Lett. 16, 13 (1970).

    CAS  Article  Google Scholar 

  32. [32]

    D. K. Sadana, M. H. Norcott, R. G. Wilson, and U. Dahmen, Appl. Phys. Lett. 49, 1169 (1986).

    CAS  Article  Google Scholar 

  33. [33]

    R. G. Wilson, D. M. Jamba, D. K. Sadana, and C. G. Hopkins, J. Appl. Phys. 61, 1355 (1987).

    CAS  Article  Google Scholar 

  34. [34]

    A. Lietoila, J. F. Gibbons, T. J. Magee, J. Peng, and J. D. Hong, Appl. Phys. Lett. 35, 532 (1979).

    CAS  Article  Google Scholar 

  35. [35]

    H. Francois-Saint-Cyr, E. Anoshkina, F. Stevie, L. Chow, K. Richardson, and D. Zhou, J. Vac. Sci. Technol. B 19, 1769 (2001).

    CAS  Article  Google Scholar 

  36. [36]

    N. Q. Lam, P. R. Okamoto, and R. A. Johnson, J. Nuc. Mat. 78, 408 (1978).

    CAS  Article  Google Scholar 

  37. [37]

    F. Bernardini, S. Picozzi, and A. Continenza, Appl. Phys. Lett. 84, 2289 (2004).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Bolduc.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bolduc, M., Awo-Affouda, C., Ramos, F. et al. Redistribution of Mn upon Annealing in Ferromagnetic Mn-implanted Si. MRS Online Proceedings Library 908, 1703 (2005). https://doi.org/10.1557/PROC-0908-OO17-03

Download citation