Carbon nanotube growth from nanoscale clusters formed by ion implantation

Abstract

We have demonstrated that iron ions implanted into silicon dioxide thin films form nanoscale clusters which can act as catalyst for carbon nanotube growth. We have implanted iron ions with an energy of 60 keV and three different doses (1014, 1015, and 1016 cm-2) into silicon dioxide thin films thermally grown on silicon substrates. We then used chemical vapor deposition (CVD) to grow carbon nanotubes on these ion implanted substrates with methane as the precursor gas. We studied the effect of ion implantation dose on the structural properties of the nanoscale clusters, as well as the carbon nanotubes nucleated from these clusters. The nanoscale clusters and grown nanotubes were characterized by Atomic Force Microscopy and Raman spectroscopy. The electrical characteristics of the as-grown nanotubes were also characterized. We found that growth of low density, horizontal, and small diameter carbon nanotubes on silicon dioxide is possible using this nucleation technique.

This is a preview of subscription content, access via your institution.

References

  1. 1

    M.S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds., Carbon nanotubes: Synthesis, Structure, Properties, and Applications, (Springer, New York, 2000).

  2. 2

    M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature (London) 381, 678 (1996).

    CAS  Article  Google Scholar 

  3. 3

    E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Carbon nanotubes: preparation and properties,” edited by T. W. Ebbesen (CRC press, 1996).

  5. 5

    J. Liu, S. Fan, and H. Dai, MRS Bulletin 29, 244 (2004).

    CAS  Article  Google Scholar 

  6. 6

    J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. Dai, Nature (London) 395, 878 (1998).

    CAS  Article  Google Scholar 

  7. 7

    C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, Journal of Physical Chemistry B 106, 2429 (2002).

    CAS  Article  Google Scholar 

  8. 8

    J. D. Plummer, M. D. Deal, and P. B. Griffin, Silicon VLSI Technology: Fundamentals, Practice, and Modeling, (Prentice Hall, Upper Saddle River, NJ, 2000).

    Google Scholar 

  9. 9

    X. Z. Ding, M. F. Chiah, W. Y. Cheung, S. P. Wong, J. B. Xu, and I. H. Wilson, H. Wang, L. Chen, and X. Liu, Journal of Applied Physics 86, 2550 (1999).

    CAS  Article  Google Scholar 

  10. 10

    SRIM – The Stopping and Range of Ions in Matter by J. F. Ziegler, www.srim.org.

  11. 11

    A. Jorio, M. A. Pimenta, A. G. Souza Filho, R. Saito, G. Dresselhaus, and M. S. Dresselhaus, New Journal of Physics 5, 139.1 (2003).

    Article  Google Scholar 

  12. 12

    A. Jorio, R. Saito, G. Dresselhaus and M.S. Dresselhaus, The Royal Society 362, 2311 (2004).

    CAS  Google Scholar 

  13. 13

    A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, Nature Materials 1, 241 (2002).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongho Choi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, Y., Oakley, J.S., Rinzler, A. et al. Carbon nanotube growth from nanoscale clusters formed by ion implantation. MRS Online Proceedings Library 908, 1503 (2005). https://doi.org/10.1557/PROC-0908-OO15-03

Download citation