Positron Annihilation Investigation in Ion-implanted Yttria-stabilized Zirconia

Abstract

Implantation with a variety of sub-MeV ions (He, Ar, Xe, O, and I) were performed on cubic single crystals of yttria-stabilized zirconia in order to assess the capability of such material to withstand high fluences as a confinement matrix for nuclear waste. In this work, we confronted the results of both Doppler Broadening using slow positron implantation spectroscopy (DB-SPIS) and the Rutherford Backscattering/Channeling spectroscopy (RBS-C) which are sensitive to lattice defects almost opposite in nature. In spite of their difference in defect specific sensitivity, and except for a precursory damage production stage almost exclusively exhibited by SPIS for very low doses (< 0.1 dpa), either techniques show a similar fluence dependence, which exhibits 3 stages starting respectively around 0.1, 2 and 3 dpa, regardless of the damaging ion. However, owing to the stage I plateau displayed in the variation of the DB-SPIS lineshape parameter, we were able to estimate an ion-mass dependence of the critical size of open-volume defects reached before the production of new predominant defects.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    C. Degueldre, J.M. Paratte, J. Nucl. Mater. 274, 1 (1999).

    CAS  Article  Google Scholar 

  2. [2]

    K. Yasuda, C. Kinoshita, S. Matsurama, A.I. Ryazanov, J. Nucl. Mater. 319, 74 (2003)

    CAS  Article  Google Scholar 

  3. [3]

    P.G. Coleman (Edit.), “Positron Beams and their Applications”, World Scientific-Singapore, 2000, pp. 1–325.

  4. [4]

    J. Fradin, R.I. Grynszpan, L. Thomé, W. Anwand, G. Brauer, Nucl. Instr. Meth. B175, 516 (2001).

    Article  Google Scholar 

  5. [5]

    J.M. Costantini, F. Beuneu, R.I. Grynszpan, C. Trautmann, Nucl. Instr. Meth. B191, 616 (2002).

    CAS  Article  Google Scholar 

  6. [6]

    R.I. Grynszpan, S. Saudé, W. Anwand, G. Brauer, Nucl. Instr. Meth. B 241, 526 (2005).

    CAS  Article  Google Scholar 

  7. [7]

    W. Anwand, H.R. Kissener, G. Brauer, Acta Phys. Pol. A 88, 7 (1995).

    CAS  Article  Google Scholar 

  8. [8]

    P.G. Coleman, S. Kuna, R.I. Grynszpan, Mater. Sci. Forum, 255, 668 (1997).

    Article  Google Scholar 

  9. [9]

    A.van Veen, H. Schut, J. de Vries, .A.Hakvoort, M. R. Ijpma, in Positron Beams for Solids and Surfaces, ed. P.J. Shultz, et al., AIP Conf. Proc., NY 218 (1990) 171.

  10. [10]

    P. Asoka-Kumar, K. G. Lynn, D. G. Welch, J. Appl. Phys. 76, 4035 (1994).

    Article  Google Scholar 

  11. [11]

    G. Brauer, W. Anwand, E.-M.Nicht, J. Kuriplach, I.Prochazka, F. Becvar, A. Osipowicz, P.G. Coleman, Phys.Rev.B 62, 5199 (2000).

    CAS  Article  Google Scholar 

  12. [12]

    Wang, Z., Chen, Z.Q., Zhu, J., Wang, S.J., Guo X., Rad. Phys. Chem. 58, 697 (2000).

    CAS  Article  Google Scholar 

  13. [13]

    J.F. Ziegler, J.P. Biersack, U. Littmark, “The Stopping and Range of Ions in Solids,” Vol. 1, ed. J.F. Ziegler, Pergamon, New York, 1985.

    Google Scholar 

  14. [14]

    J. Fradin, Thesis ENSAM, Paris, 2002.

  15. [15]

    Coleman, P.G., Burrows, C.P., Knights, A.P., Appl. Phys. Lett. 80(6), 947 (2002).

    CAS  Article  Google Scholar 

  16. [16]

    R. Krause-Rehberg, F. Boerner, F. Redmann, J. Gebauer, R. Koegler, R. Kliemann, W. Skorupa, W. Egger, G. Koegel, W. Triftshaeuser, Physica B 308, 443 (2001).

    Google Scholar 

  17. [17]

    K.H. Heinig, H.U. Jaeger, in Proc. 1st ENDEASD Meeting , IMEC, Leuven, 1999, p. 297.

    Google Scholar 

  18. [18]

    S. Valkealathi, R.M. Nieminen, Appl. Phys. A 35, 51 (1984).

    Article  Google Scholar 

  19. [19]

    K.E. Sickafus, Hj. Matzke, Th. Hartmann, K. Yasuda, J.A. Valdez, P. Chodak III, M. Nastasi, R.A. Verrall, J. Nucl. Mater., 274, 66 (1999).

    CAS  Article  Google Scholar 

  20. [20]

    J.F. Gibbons, Proc. IEEE, 60, 1062 (1972).

    CAS  Article  Google Scholar 

  21. [21]

    S. Saudé, R.I. Grynszpan, W. Anwand, G. Brauer, J.J. Grob, Y. Le Gall, Nucl. Instr. Meth. B216, 156 (2004).

    Article  Google Scholar 

  22. [22]

    E.L. Fleischer, M.G. Norton, M.A. Zaleski, W. Hertl, C.B. Carter, J.W. Mayer, J. Mater. Res. 6(9), 1905 (1991).

    CAS  Article  Google Scholar 

  23. [23]

    C.V. Falub, S.W.H. Eijt, A. van Veen, P.E. Mijnarends, H. Schut, Mater. Sci. Forum, 363, 561 (2001).

    Article  Google Scholar 

  24. [24]

    P. Asoka-Kumar, M. Alatalo, V; J; Ghosh, A.C. Kruserman, B. Nielsn, K.G. Lynn, Phys. Rev. Lett. 77, 2097 (1996).

    CAS  Article  Google Scholar 

  25. [25]

    S. Saudé, R.I. Grynszpan, W. Anwand, G. Brauer, J. Alloys and Comp. 382, 252 (2004).

    Article  Google Scholar 

  26. [26]

    R. A.Hakvoort, A.van Veen, P.E. Mijnarends, H. Schut, Appl. Surf. Sci. 85, 271 (1995).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Brauer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grynszpan, R.I., Brauer, G. & Anwand, W. Positron Annihilation Investigation in Ion-implanted Yttria-stabilized Zirconia. MRS Online Proceedings Library 908, 1001 (2005). https://doi.org/10.1557/PROC-0908-OO10-01

Download citation

Keywords

  • zirconia
  • ion-irradiation
  • positrons
  • RBS-Channeling