Ion-Beam-Synthesized Ag-SiO2 Nanocomposite Layers For Electron Field Emission Devices


Ag-SiO2 nanocomposite layers were synthesised by Ag+ implantation into thermally oxidised SiO2 layers and demonstrated to have excellent field emission (FE) properties. These nanocomposite layers can give an emission current of 1 nA at electric fields less than 20 V/μm, compared to several thousand volts per micrometre of pure metal surfaces. Their fabrication processes are fully compatible with existing integrated circuit technology. By correlating the FE results with other characterisation techniques including atomic force microscopy, Rutherford backscattering spectroscopy and transmission electron microscopy, it is clearly demonstrated that there are two types of field enhancement mechanisms responsible for the excellent FE properties of these cathodes. Firstly, the electrically conductive Ag nano-clusters embedded in the insulating SiO2 matrix give rise to a local electric field enhancement due to an electrical inhomogeneity effect and secondly, the dense surface protrusions provide a geometric local electric field enhancement. The FE properties of these layers are critically dependent on the size and distribution of the Ag clusters, which can be controlled by the Ag dose and modified by the post-implantation pulse annealing with a high power KrF Excimer laser operating at 248 nm.

This is a preview of subscription content, access via your institution.


  1. 1

    W. Zhu, Vacuum microelectronics, John Wiley & Sons, Inc (2001).

  2. 2

    Y Funaki, Y Mochizuki, Flat panel market to 10 trillion yen by 2010. Mikkei Microdevices, Flat panel display yearbook, InterLingua, California USA, (1999), p. 75

    Google Scholar 

  3. 3

    O. Gröning, O.M. Küttel, P. Gröning and L. Schlaphach, Appl. Surf. Sci. 111, 135 (1996).

    Article  Google Scholar 

  4. 4

    A. Ilie, A.C. Ferrari, T. Yagi, J. Robertson, Appl. Phys. Lett. 76, 2627 (2000).

    CAS  Article  Google Scholar 

  5. 5

    J.D. Carey, R.D. Forrest, R.U.A. Khan, S.R.P. Silva, Appl. Phys. Lett. 77, 2006 (2000).

    CAS  Article  Google Scholar 

  6. 6

    W.M. Tsang, S.P. Wong and J.K.N. Lindner, Appl. Phys. Lett. 81, 3942 (2002).

    CAS  Article  Google Scholar 

  7. 7

    N.S. Xu and S. E. Huq, Mater. Sci. & Eng. R27, 47 (2005).

    Article  Google Scholar 

  8. 8

    E. Cattaruzza, Nucl. Instr. and Meth. B 169, 141 (2000).

    CAS  Article  Google Scholar 

  9. 9

    G. Battaglin, Nucl. Instr. and Meth. B 116, 102 (1996).

    CAS  Article  Google Scholar 

  10. 10

    R. C. Weast, CRC Handbook of Chemistry and Physics, 81th ed., Chemical Rubber, Boca Raton, FL, (2000–2001)

    Google Scholar 

  11. 11

    W.M. Tsang, V. Stolojan, S. P. Wong, B. J. Sealy and S. R. P. Silva, Mater. Sci. & Eng. B (in press).

  12. 12

    W. M. Tsang, S. P. Wong and J. K. N. Lindner, Appl. Phys. Lett. 84, 3193 (2004).

    CAS  Article  Google Scholar 

  13. 13

    J.F. McBrayer, R.M. Swanson , T. W. Sigmon and J. Bravman, Appl. Phys. Lett. 43, 653 (1983).

    CAS  Article  Google Scholar 

  14. 14

    F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G. W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, R. Bertoncello, and R. F. Haglund, Jr., Appl. Phys. Lett. 69, 3101 (1996).

    CAS  Article  Google Scholar 

  15. 15

    A.L. Stepanov, D.E. Hole, A.A. Bukharaev, P.D. Townsend and N.I. Hurgazizov, Appl. Surf. Sci. 136, 298 (1998).

    CAS  Article  Google Scholar 

  16. 16

    A.L. Stepanov, D.E. Hole and P.D. Townsend, Nucl. Instr. and Meth. B 149, 89 (1999).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to W. M. Tsang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tsang, W.M., Stolojan, V., Adikaari, A.A.D.T. et al. Ion-Beam-Synthesized Ag-SiO2 Nanocomposite Layers For Electron Field Emission Devices. MRS Online Proceedings Library 908, 702 (2005).

Download citation