Micro-patterned NiFeMo Magnetoimpedance Multilayer for Magnetic Sensor Application

Abstract

As an alternative to the magnetoimpedance (MI) devices made from amorphous ribbon or wire, this study proposed a thin film type MI device composed with Ag conductive core and soft ferromagnetic NiFeMo sandwich layers. Obtained optimum sandwich structure was Ta 5 nm/ NiFeMo 300 nm/ Ta 5 nm/ Ag 900 nm/ Ta 5 nm/ NiFeMo 300 nm/ Ta 5 nm, and the width of Ag as 20 µm and the width of NiFeMo as 100 µm. It was patterned by using photolithography and lift-off process. The sandwich structure showed the maximum MI ratio about 40% at the 15 MHz. The impedance change was linear and nearly reversible at the external magnetic field region below the anisotropy field.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L.V. Panina, D.P. Makhnovskiy, and K. Mohri: Magnetoimpedance in amorphous wires and multifunctional applications: From sensors to tunable artificial microwave materials. J. Magn .Magn. Mater., 272, 1452 (2004).

    Article  Google Scholar 

  2. 2.

    L.V. Panina, K. Mohri, and D.P. Makhnovskiy: Mechanism of asymmetrical magnetoimpedance in amorphous wires. J. Appl. Phys., 85, 5444 (1999).

    CAS  Article  Google Scholar 

  3. 3.

    D.X. Chen, J.L. Munoz, A. Hernando, and M. Vazquez: Magnetoimpedance of metallic ferromagnetic wires. Physical Review B, 57, 10699 (1998).

    CAS  Article  Google Scholar 

  4. 4.

    G.V. Kurlyandskaya, M. Vazquez, J.L. Munoz, D. Garcia, and J. McCord: Effect of induced magnetic anisotropy and domain structure features on magnetoimpedance in stress annealed Co-rich amorphous ribbons. J. Magn. Magn. Mater., 196, 259 (1999).

    Article  Google Scholar 

  5. 5.

    N.A. Buznikov, C.G. Kim, C.O. Kim, and S.S. Yoon: Analysis of field and frequency dependences of asymmetric giant magnetoimpedance in field-annealed amorphous ribbons. Physics of Metals and Metallography, 99, S69 (2005).

  6. 6.

    B.D. Cullity, “Introduction to Magnetic Materials” (Addison-Wesley Publishing Company Inc., 1972) pp.529.

  7. 7.

    T. Morikawa, Y. Nishibe, H. Yamadera, Y. Nonomura, M. Takeuchi, and Y. Taga: Giant magneto-impedance effect in layered thin film, IEEE Trans. Magn., 33, 4367 (1997).

    CAS  Article  Google Scholar 

  8. 8.

    L.V. Panina and K. Mohri: Magneto-impedance in multilayer films, Sensors and Actuators, A: Physical, 81, 106 (2000).

    Google Scholar 

  9. 9.

    M. Carara, M.N. Baibich, and R.L. Sommer: Magnetization dynamics as derived from magneto impedance measurements, J. Appl. Phys., 88, 331 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    D. Menard, D. Frankland, P. Ciureanu, A. Yelon, M. Rouabhi, R.W. Cochrane, H. Chiriac and T.A. Ovari: Modeling of domain structure and anisotropy in glass-covered amorphous wires, J. Appl. Phys., 83, 6566 (1998).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Duhyun Lee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, D., Jeong, G.H., Kim, J.H. et al. Micro-patterned NiFeMo Magnetoimpedance Multilayer for Magnetic Sensor Application. MRS Online Proceedings Library 906, 109 (2005). https://doi.org/10.1557/PROC-0906-HH01-09

Download citation