Two-Dimensional Carbon Nanotube Networks: A Transparent Electronic Material

Abstract

The random, two-dimensional network formed of electrically conducting nanoscale wires, called carbon nanotubes, is a transparent electronic material that can be fabricated using room-temperature printing or spraying technologies. Depending on the network density, networks with both metallic- and semiconducting-like attributes can be fabricated. Both display high conductivity, high carrier mobility and optical transparency. The networks also have high mechanical flexibility, robustness and environmental resistance. Application opportunities range from lightweight, transparent conducting films, to electrically conducting fabrics, to active electronic devices and sensors.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    B.G. Lewis and D.C. Paine, “Applications and Processing of Transparent Conducting Oxides,” MRS Bull. 25 (8), 22 (2000).

  2. 2.

    R.G. Gordon, “Criteria for Choosing Transparent Conductors,” MRS Bull. 25 (8), 52 (2000).

  3. 3.

    T. Durkop, S.A. Getty, Enrique Cobas, and M.S. Fuhrer, “Extraordinary Mobility in Semiconducting Carbon Nanotubes,” Nano Lett 4, 35 (2004).

    Article  Google Scholar 

  4. 4.

    M.S. Dresselhaus and H. Dai, and Guest Editors, “Carbon Nanotubes: Continued Innovations and Challenges,” MRS Bull. 29 (4), 237 (2004).

  5. 5.

    J.A. Shim, N.W. Kam, and H. Dai, “Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors,” J Am Chem Soc. 123, 11512 (2001).

    CAS  Article  Google Scholar 

  6. 5.

    C. Zhou, J. Kong, E. Yenilmez, and H. Dai, “Modulated Chemical Doping of Individual Carbon Nanotubes,” Science 290, 1552 (2000).

  7. 6.

    G. de la Torre, W. Blau, and T. Torres, “A survey on the functionalization of single walled nanotubes. The chemical attachment of phthalocyanine moieties,” Nanotechnologies 14, 765 (2003).

    Article  Google Scholar 

  8. 7.

    M. Stadermann, S.J. Papadakis, M.R. Falvo, J. Novak, E. Snow, Q. Fu, J. Liu, Y. Fridman, J.J. Boland, R. Superfine, and S. Washburn, “Nanoscale study of conduction through carbon nanotube networks,” Phys. Rev. B69, 201402(R) (2004).

    Article  Google Scholar 

  9. 8.

    Y. Zhou, A. Gaur, S.-H.Hur, C. Kocabas, M. A. Meitl, M. Shim, J. A Rogers, “p-Channel, n-Channel Thin Film Transistors and p-n Diodes Based on Single Wall Carbon Nanotube Networks”, Nano Lett. 4, 2031 (2004)

    CAS  Article  Google Scholar 

  10. 9a.

    N.P. Armitage, J-C.P. Gabriel, and G. Gruner, “Langmuir-Blodgett nanotube films,” Appl. Phys. Lett. 2003

  11. 9b.

    L. Hu, D.S. Hecht, and G. Grüner, “Percolation in Transparent and Conducting Carbon Nanotube Networks,” Nano Lett. 4 (12), 2513 –2517 (2004)

  12. 10.

    Y Zhou, L. Hu, and G. Grüner, “A Printing Method for carbon nanotube thin films,” (to be published)

  13. 11.

    M. Kaempgen, G.S. Duesberg, and S. Roth “Transparent Carbon Nanotube Coatings,” Appl. Surf. Sci., 252, 425 (2005)

    CAS  Article  Google Scholar 

  14. 12.

    The conductivity is calculated by assuming that nanotubes fully fill the space, this assumption is clearly not valid, and leads to an underestimation of the conductivity.

  15. 13.

    M.A. Meitl, Y. Zhou, A. Gaur, S. Jeon, M.L. Usrey, M.S. Strano, and J.A. Rogers, Nano Lett. 4, 1643 (2004)

    CAS  Article  Google Scholar 

  16. 14.

    Hongjie Dai, “Growth and Characterization of Carbon Nanotubes”, book chapter in “Topics in Applied Physics”, Vol. 80, “Carbon Nanotubes”, Edited by M. Dresselhaus, G. Dresselhaus and P. Avouris, Springer Verlag (2000).

  17. 15.

    Z.C. Wu, Z.H. Chen, X. Du, et al. “Transparent, conductive carbon nanotube films,” Science, 305, 1273 (2004)

    CAS  Article  Google Scholar 

  18. 16.

    G. Stauffer, “Introduction to Percolation Theory,” Taylor & Francis: London, 1985

  19. 17a.

    J. Vavro, J.M. Kikkawa, and J.E. Fischer, “Metal-Insulator Transition in Doped Single Wall Carbon Nanotubes,” Physical Review B71, 155410 (2005)

  20. 17b.

    E. Bakyarova, M.E. Itkis, N. Cabrera, B. Zhao, A. Yu, J. Gao, and R.C. Haddon, “Electronic Properties of Single-Walled Carbon Nanotube Networks,” J. Am. Chem. Soc., 127, 5990 (2005)

  21. 18.

    A.B. Kaiser, G. Düsberg, and S. Roth, “Heterogeneous model for conduction in carbon nanotubes,” Physical Review B (Condensed Matter and Materials Physics), 57, 1418 (1998)

  22. 19.

    G. Grüner, “Nonlinear and frequency-dependent transport phenomena in low dimensional conductors,” Physica D: Nonlinear Phenomena, 8, 1 (1983)

    Article  Google Scholar 

  23. 20.

    M. Dressel, and G.Gruner, “Electrodynamics of Solids,” Cambridge University Press, 2002

  24. 21.

    B. Ruzicka and L. Degiorgi, “Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films,” Phys. Rev. B61, R2468 (2000)

    Article  Google Scholar 

  25. 22.

    Bokrath et al. “Chemical Doping of Individual semiconducting carbon nanotube ropes,” Phys. Rev B61, 10606 (2000)

  26. 23.

    K. Bradley, J.C. Gabriel, M. Briman, A. Star, G. Gruner, “Charge Transfer from Ammonia Physisorbed on Nanotubes,” Phys. Rev Lett. 91 (21), 218301 (2003)

  27. 24.

    G. P. Siddons, D. Merchin, J. H. Back, J. K. Jeong, M. Shim, “Highly Efficient Gating and Doping of Carbon Nanotubes with Polymer Electrolytes,” Nano Lett. 4, 927–931(2004)

  28. 25a.

    A. Star, T-R Han, J-C.P. Gabriel, K. Bradley, and G. Grüner, “Interaction of AromaticCompounds with Carbon Nanotubes,” Nano Letters, 3 (10), 1421 –1423 (2003)

  29. 25b.

    K. Bradley, M. Briman, A. Star, G. Gruner, “Charge Transfer from Adsorbed Proteins”, Nano Lett. 4, 253–256 (2004)

  30. 26.

    D.S. Hecht, L. Hu, and G. Gruner, “Electronic Properties of Carbon Nanotube/Fabric Composites,” Accepted in Current Applied Physics (2005)

  31. 27.

    L. Hu, D. Li, Y. Zhou, R. Kaner and G. Gruner, “Patterned transport carbon nanotube electrodes for electrochromatic device applications,” (to be published)

  32. 28.

    B. Shan and K. Cho “First-Principles study of Work Functions of Single Wall Carbon Nanotubes” Phys. Rev. Lett. 94 (23), 236602 (2005)

  33. 29.

    N. de Jonge, M. Allioux, M. Doytcheva, M. Kaiser, K.B.K. Teo, R.G. Lacerda and W.I. Milne. “Characterization of the field emission properties of individual thin carbon Nanotubes,” Appl. Phys. Lett. 85, 1607 (2004)

    Article  Google Scholar 

  34. 30.

    G. Gruner, Patent Application

  35. 31.

    J.C.P Gabriel, Mater. Res. Symp. Proc. 762, Q.12.7.1 (2003)

    Google Scholar 

  36. 32.

    E.S. Snow, J. Novak, P.M.Campbell, D. Park, “Random networks of carbon nanotubes as an electronic material,” Appl. Phys. Lett. 82 (13), 2145 (2003)

  37. 33.

    K. Bradley, J-C.P. Gabriel, and G. Grüner, “Flexible Nanotube Electronics,” Nano Letters, 3 (10), 1353 (2003)

  38. 34.

    E. Artukovic, M. Kaempgen, D.S. Hecht, S. Roth, and G. Grüner, “Transparent and Flexible Carbon Nanotube Transistors,” Nano Lett. 5 (4), 757 (2005)

  39. 35.

    S.-H. Hur, M.-H. Yoon, A. Gaur, M. Shim, A. Facchetti, T.J. Marks and J.A. Rogers, “Organic Nanodielectrics for Low Voltage Carbon Nanotube Thin Film Transistors and Complementary Logic Gates,” Journal of the American Chemical Society 127(40), 13808 (2005)

  40. 36a.

    D.S. Hecht, R.A. Ramirez, E. Artukovic, M. Briman, K. Chichak, J.F. Stoddart, G. Gruner, “Bio-inspired Detection of Light using Porphyrin Sensitized Carbon Nanotube FETs,” Submitted (2005)

  41. 36b.

    A. Star, Y. Lu, K. Bradley, G. Gruner, “Nanotube optoelectronic memory devices.” Nano Lett. 4 1587 (2004).

  42. 37.

    Orgacon™ EL – P3000, AGFA

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to George Gruner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gruner, G. Two-Dimensional Carbon Nanotube Networks: A Transparent Electronic Material. MRS Online Proceedings Library 905, 605 (2005). https://doi.org/10.1557/PROC-0905-DD06-05

Download citation