Recent Developments in Thermodynamic Theory of Ferroelectric Thin Films


The nonlinear thermodynamic theory of epitaxial ferroelectric films has predicted several important strain-induced phenomena, which have been already observed experimentally. This justifies further development of this theory aiming at the better understanding of the structure/property relationships in thin-film ferroelectrics. To that end, a number of new theoretical studies have been performed recently. First, the thermodynamic formalism has been extended to epitaxial films grown on dissimilar substrates inducing anisotropic strains and a shear deformation in the film plane. Second, the polarization states and dielectric properties were calculated for polydomain Pb(Zr1-xTix)O3 films deposited on cubic substrates. Third, the effect of depolarizing field on the physical properties of strained single-domain films sandwiched between continuous electrodes was described. The results of these studies will be discussed in this paper.

This is a preview of subscription content, access via your institution.


  1. 1.

    L. Landau, Sow. Phys. 11, 26 (1937); L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).

  2. 2.

    A. F. Devonshire, Phil. Mag. 40, 1040 (1949); 42, 1065 (1951); Adv. Phys. 3, 85 (1954).

    CAS  Article  Google Scholar 

  3. 3.

    A. J. Bell and L. E. Cross, Ferroelectrics 59, 197 (1984).

    CAS  Article  Google Scholar 

  4. 4.

    M. J. Haun, E. Furman, S. J. Jang, H. A. McKinstry, and L. E. Cross, J. Appl. Phys. 62, 3331 (1987).

    CAS  Article  Google Scholar 

  5. 5.

    M. J. Haun, E. Furman, S. J. Jang, and L. E. Cross, Ferroelectrics 99, 13 (1989).

    CAS  Article  Google Scholar 

  6. 6.

    G. A. Rossetti, Jr., L. E. Cross, and K. Kushida, Appl. Phys. Lett. 59, 2524 (1991).

    CAS  Article  Google Scholar 

  7. 7.

    T. Yamamoto and H. Matsuoka, Jpn. J. Appl. Phys. 33, 5317 (1994).

    CAS  Article  Google Scholar 

  8. 8.

    Y. Yano, K. Iijima, Y. Daitoh, T. Terashima, Y. Bando, Y. Watanabe, H. Kasatani, and H. Terauchi, J. Appl. Phys. 76, 7833 (1994).

    CAS  Article  Google Scholar 

  9. 9.

    N. A. Pertsev, G. Arlt, and A. G. Zembilgotov, Microelectr. Eng. 29, 135 (1995).

    CAS  Article  Google Scholar 

  10. 10.

    N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Phys. Rev. Lett. 80, 1988 (1998).

    CAS  Article  Google Scholar 

  11. 11.

    A. Yu. Emelyanov, N. A. Pertsev, and A. L. Kholkin, Phys. Rev. B66, 214108 (2002).

    Article  CAS  Google Scholar 

  12. 12.

    S. B. Desu, V. P. Dudkevich, P. V. Dudkevich, I. N. Zakharchenko, and G. L. Kushlyan, Mater. Res. Soc. Symp. Proc. 401, 195 (1996).

    CAS  Article  Google Scholar 

  13. 13.

    N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, Ferroelectrics 223, 79 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phys. Rev. B61, R825 (2000).

    Article  Google Scholar 

  15. 15.

    Z.-G. Ban and S. P. Alpay, J. Appl. Phys. 91, 9288 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    N. A. Pertsev, V. G. Kukhar, H. Kohlstedt, and R. Waser, Phys. Rev. B67, 054107 (2003).

    Article  CAS  Google Scholar 

  17. 17.

    For BaxSr1−xTiO3 films, the accuracy of the diagrams reported in Ref. [15] is questionable at low temperatures since the P4 approximation was used in the calculations. This is not consistent with the fact that the dielectric stiffnesses of BaTiO3, which were employed to determine those of BaxSr1−xTiO3, were obtained in Ref. [3] from the fitting of experimental data in the P6 approximation.

  18. 18.

    A. L. Roitburd, Phys. Status Solidi A37, 329 (1976).

    Article  Google Scholar 

  19. 19.

    N. A. Pertsev and V. G. Koukhar, Phys. Rev. Lett. 84, 3722 (2000).

    CAS  Article  Google Scholar 

  20. 20.

    V. G. Koukhar, N. A. Pertsev, and R. Waser, Phys. Rev. B64, 214103 (2001).

    Article  CAS  Google Scholar 

  21. 21.

    Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Appl. Phys. Lett. 78, 3878 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    Y. L. Li, S. Choudhury, Z. K. Liu, and L. Q. Chen, Appl. Phys. Lett. 83, 1608 (2003).

    CAS  Article  Google Scholar 

  23. 23.

    D. A. Tenne, X. X. Xi, Y. L. Li, L. Q. Chen, A. Soukiassian, M. H. Zhu, A. R. James, J. Lettieri, D. G. Schlom, W. Tian, and X. Q. Pan, Phys. Rev. B69, 174101 (2004).

    Article  CAS  Google Scholar 

  24. 24.

    J. H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y. L. Li, S. Choudhury, W. Tian, M. E. Hawley, B. Craigo, A. K. Tagantsev, X. Q. Pan, S. K. Streiffer, L. Q. Chen, S. W. Kirchoefer, J. Levy, and D. G. Schlom, Nature (London) 430, 758 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    F. He, B. O. Wells, and S. M. Shapiro, Phys. Rev. Lett. 94, 176101 (2005).

    Article  CAS  Google Scholar 

  26. 26.

    K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L.-Q. Chen, D. G. Schlom, and C. B. Eom, Science 306, 1005 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    A. L. Roytburd, S. P. Alpay, V. Nagarajan, C. S. Ganpule, S. Aggarwal, E. D. Williams, and R. Ramesh, Phys. Rev. Lett. 85, 190 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    N. Yanase, K. Abe, N. Fukushima, and T. Kawakubo, Jpn. J. Appl. Phys. 38, 5305 (1999).

    CAS  Article  Google Scholar 

  29. 29.

    A. G. Zembilgotov, N. A. Pertsev, H. Kohlstedt, and R. Waser, J. Appl. Phys. 91, 2247 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    N. A. Pertsev, V. G. Koukhar, R. Waser, and S. Hoffmann, Appl. Phys. Lett. 77, 2596 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    C. L. Canedy, H. Li, S. P. Alpay, L. Salamanca-Riba, A. L. Roytburd, and R. Ramesh, Appl. Phys. Lett. 77, 1695 (2000).

    CAS  Article  Google Scholar 

  32. 32.

    Z.-G. Ban and S. P. Alpay, J. Appl. Phys. 93, 504 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    L. Chen, V. Nagarajan, R. Ramesh, and A. L. Roytburd, J. Appl. Phys. 94, 5147 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    A. Sharma, Z.-G. Ban, S. P. Alpay, and J. V. Mantese, J. Appl. Phys. 95, 3618 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    Y. Lin, X. Chen, S. W. Liu, C. L. Chen, J.-S. Lee, Y. Li, Q. X. Jia, and A. Bhalla, Appl. Phys. Lett. 84, 577 (2004).

    CAS  Article  Google Scholar 

  36. 36.

    W. K. Simon, E. K. Akdogan, A. Safari, and J. A. Bellotti, Appl. Phys. Lett. 87, 082906 (2005).

    Article  CAS  Google Scholar 

  37. 37.

    This approximation is sufficient for our purposes, because even in very thick films the lattice strains do not relax to zero outside the inhomogeneously strained thin layer near the interface, which appears in the presence of misfit-dislocation arrays.

  38. 38.

    K. Binder, Ferroelectrics 35, 99 (1981).

    Article  Google Scholar 

  39. 39.

    W. L. Zhong, B. D. Qu, P. L. Zhang, and Y. G. Wang, Phys. Rev. B50, 12375 (1994).

    Article  Google Scholar 

  40. 40.

    D. Vanderbilt and M. H. Cohen, Phys. Rev. B63, 094108 (2001).

    Article  CAS  Google Scholar 

  41. 41.

    Y. L. Li, L. E. Cross, and L. Q. Chen, J. Appl. Phys. 98, 064101 (2005).

    Article  CAS  Google Scholar 

  42. 42.

    A. G. Zembilgotov, N. A. Pertsev, U. Böttger, and R. Waser, Appl. Phys. Lett. 86, 052903 (2005).

    Article  CAS  Google Scholar 

  43. 43.

    J. Wang and T.-Y. Zhang, Appl. Phys. Lett. 86, 192905 (2005).

    Article  CAS  Google Scholar 

  44. 44.

    Similar calculations were performed for PbTiO3 films in Ref. [43] but the stability ranges of the ca´ and ca´´ states were overlooked. The results obtained in Ref. [43] for BaTiO3 films are probably only partially correct since the employed set of material parameters, taken from Ref. [10], was later found to be inappropriate for BaTiO3 [13].

  45. 45.

    W. Pompe, X. Gong, Z. Suo, and J. S. Speck, J. Appl. Phys. 74, 6012 (1993).

    CAS  Article  Google Scholar 

  46. 46.

    N. A. Pertsev and A. G. Zembilgotov, J. Appl. Phys. 78, 6170 (1995).

    CAS  Article  Google Scholar 

  47. 47.

    V. G. Kukhar, N. A. Pertsev, H. Kohlstedt, and R. Waser, cond-mat/0411636.

  48. 48.

    M. B. Kelman, P. C. McIntyre, A. Gruverman, B. C. Hendrix, S. M. Bilodeau, and J. F. Roeder, J. Appl. Phys. 94, 5210 (2003).

    CAS  Article  Google Scholar 

  49. 49.

    I. Ivanchik, Sov. Phys. Solid State 3, 2705 (1962).

    Google Scholar 

  50. 50.

    I. P. Batra, P. Würfel, and B. D. Silverman, Phys. Rev. Lett. 30, 384 (1973); Phys. Rev. B8, 3257 (1973); J. Vac. Sci. Technol. 10, 687 (1973).

    CAS  Article  Google Scholar 

  51. 51.

    R. Kretschmer and K. Binder, Phys. Rev. B20, 1065 (1979).

    Article  Google Scholar 

  52. 52.

    D. R. Tilley and B. Žekš, Ferroelectrics 134, 313 (1992).

    Article  Google Scholar 

  53. 53.

    Y. Watanabe, Phys. Rev. B57, 789 (1998).

    Article  Google Scholar 

  54. 54.

    V. A. Stephanovich, I. A. Luk’yanchuk, and M. G. Karkut, Phys. Rev. Lett. 94, 047601 (2005).

    CAS  Article  Google Scholar 

  55. 55.

    R. Plonka, R. Dittmann, N. A. Pertsev, E. Vasco, and R. Waser, Appl. Phys. Lett. 86, 202908 (2005).

    Article  CAS  Google Scholar 

  56. 56.

    A. L. Roytburd, S. Zhong, and S. P. Alpay, Appl. Phys. Lett. 87, 092902 (2005).

    Article  CAS  Google Scholar 

  57. 57.

    J. Junquera and Ph. Ghosez, Nature (London) 422, 506 (2003).

    CAS  Article  Google Scholar 

  58. 58.

    N. Sai, A. M. Kolpak, and A. M. Rappe, Phys. Rev. B72, 020101(R) (2005).

    Article  CAS  Google Scholar 

  59. 59.

    For Pt/PbTiO3/Pt capacitors, the polarization enhancement in ultrathin films was predicted [58], being caused by a microscopic film/electrode interaction prevailing over the depolarizing-field effect.

  60. 60.

    The calculations were performed in the P8 approximation using the thermodynamic parameters of BaTiO3 obtained in Ref. [41] and the elastic and electrostrictive constants listed in Ref. [20].

  61. 61.

    P. Mokrý, A. K. Tagantsev, and N. Setter, Phys. Rev. B70, 172107 (2004).

    Article  CAS  Google Scholar 

  62. 62.

    J. S. Speck and W. Pompe, J. Appl. Phys. 76, 466 (1994).

    CAS  Article  Google Scholar 

  63. 63.

    R. Dittmann, R. Plonka, E. Vasco, N. A. Pertsev, J. Q. He, C. L. Jia, S. Hoffmann-Eifert, and R. Waser, Appl. Phys. Lett. 83, 5011 (2003).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to N. A. Pertsev.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pertsev, N.A. Recent Developments in Thermodynamic Theory of Ferroelectric Thin Films. MRS Online Proceedings Library 902, 805 (2005).

Download citation