Synthesis and Properties of Barium Titanate Thin Films on Copper Substrates

Abstract

Barium titanate thin films have been deposited on copper foils in the absence of interfacial layers via a chemical solution process. The dielectric – base metal stacks have been processed in reductive atmospheres such that substrate oxidation is avoided while allowing the perovskite film phase to crystallize. This accomplishment has facilitated the pursuit of a new embedded capacitor technology offering compatibility with polymer printed wiring boards and capacitance densities in excess of 2.5 µF/cm2. This represents a distinct improvement beyond conventional foil-based capacitor strategies. Finally, two critical phenomena will be discussed: (1) the effect of grain size on the dielectric properties of barium titanate thin films and (2) the effect of the B-site substituent Zr on the lattice, microstructure, and dielectric properties. Most importantly, high processing temperatures have allowed for microstructural and dielectric properties similar to well-prepared bulk ceramics, including average grain diameters greater than 0.1 µm, relative permittivities in excess of 2000, and coercive fields below 10 kV/cm. These properties will be discussed in the context of bulk ceramic and thin film reference data and with regard to integration into printed wiring boards.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. J. Kim, D. Y. Kaufman, S. K. Streiffer, T. H. Lee, R. Erck and O. Auciello, Materials Research Society Symposium Proceedings 748, 457 (2003).

    CAS  Google Scholar 

  2. 2.

    T. Kim, A. I. Kingon, J. P. Maria and R. T. Croswell, Journal of Materials Research 19, 2841 (2004).

    CAS  Article  Google Scholar 

  3. 3.

    J. P. Maria, K. Cheek, S. Streiffer, S. H. Kim, G. Dunn and A. Kingon, Journal of the American Ceramic Society 84, 2436 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    P. G. Mercado and A. P. Jardine, Journal of Intelligent Material Systems and Structures 6, 62 (1995).

    CAS  Article  Google Scholar 

  5. 5.

    K. Saegusa, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 36, 6888 (1997).

    CAS  Article  Google Scholar 

  6. 6.

    Q. Zou, H. E. Ruda and B. G. Yacobi, Applied Physics Letters 78, 1282 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    Q. Zou, H. E. Ruda, B. G. Yacobi, K. Saegusa and M. Farrell, Applied Physics Letters 77, 1038 (2000).

    CAS  Article  Google Scholar 

  8. 8.

    J. R. Cheng, W. Y. Zhu, N. Li and L. E. Cross, Applied Physics Letters 81, 4805 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    J. T. Dawley and P. G. Clem, Applied Physics Letters 81, 3028 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    J. T. Dawley, R. J. Ong and P. G. Clem, Journal of Materials Research 17, 1678 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    J. Ihlefeld, B. Laughlin, A. Hunt-Lowery, W. Borland, A. Kingon and J.-P. Maria, Journal of Electroceramics 14, 95 (2005).

    CAS  Article  Google Scholar 

  12. 12.

    J. F. Ihlefeld, W. Borland and J.-P. Maria, Journal of Materials Research 10, 2838 (2005).

    Article  Google Scholar 

  13. 13.

    B. Laughlin, J. Ihlefeld and J. P. Maria, Journal of the American Ceramic Society 88, 2652 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    M. D. Losego, L. H. Jimison, J. F. Ihlefeld and J.-P. Maria, Applied Physics Letters 86, 172906 1 (2005).

    Article  Google Scholar 

  15. 15.

    I. Burn and G. H. Maher, Journal of Materials Science 10, 633 (1975).

    CAS  Article  Google Scholar 

  16. 16.

    J. M. Herbert, Proceedings of the Institution of Electrical Engineers-London 112, 1474 (1965).

    CAS  Article  Google Scholar 

  17. 17.

    C. A. Randall, Journal of the Ceramic Society of Japan 109, S2 (2001).

    CAS  Article  Google Scholar 

  18. 18.

    Y. Sakabe, American Ceramic Society Bulletin 66, 1338 (1987).

    CAS  Google Scholar 

  19. 19.

    I. Barin and O. Knacke, Thermochemical properties of inorganic substances, (Springer-Verlag, 1973).

  20. 20.

    G. Arlt, D. Hennings and G. de With, Journal of Applied Physics 58, 1619 (1985).

    CAS  Article  Google Scholar 

  21. 21.

    M. H. Frey, Z. Xu, P. Han and D. A. Payne, Ferroelectrics 206, 337 (1998).

    Article  Google Scholar 

  22. 22.

    C. B. Parker, J. P. Maria and A. I. Kingon, Applied Physics Letters 81, 340 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    ASTM E 112-96, Standard Test Methods for Determining Average Grain Size, (ASTM International, 2003).

  24. 24.

    R. C. Kell and N. J. Hellicar, Acustica 6, 235 (1956).

    CAS  Google Scholar 

  25. 25.

    T. N. Verbitskaia, G. S. Zhdanov, I. N. Venevtsev and S. P. Soloviev, Soviet physics. Crystallography 3, 182 (1958).

    Google Scholar 

  26. 26.

    S. Wada, H. Adachi, H. Kakemoto, H. Chazono, Y. Mizuno, H. Kishi and T. Tsurumi, Journal of Materials Research 17, 456 (2002).

    CAS  Article  Google Scholar 

  27. 27.

    A. Dixit, S. B. Majumder, P. S. Dobal, R. S. Katiyar and A. S. Bhalla, Thin Solid Films 447–448, 284 (2004).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jon F. Ihlefeld.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ihlefeld, J.F., Borland, W. & Maria, JP. Synthesis and Properties of Barium Titanate Thin Films on Copper Substrates. MRS Online Proceedings Library 902, 203 (2005). https://doi.org/10.1557/PROC-0902-T02-03

Download citation