Complexes of conjugated polymer and carbon nanotubes: does blending with nanotubes influence the ordering of semi-crystalline polymers?

Abstract

A detailed study of poly(alkylthiophene) self-assembly and organization on single-walled carbon nanotubes is presented. We show that ordered polymer domains are formed when a conjugated polymer is blended with small amounts of carbon nanotubes. By correlating the lowest energy feature in the absorption spectra of the polymer with ordering, we demonstrate that the degree of ordering in the polymer is enhanced when it is blended with carbon nanotubes. Furthermore, we elucidated the conformation of the polymer chain when it is absorbed onto the nanotube surface and imaged the high degree of ordering in the polymer/carbon nanotube complex by microscopy.

This is a preview of subscription content, access via your institution.

References

  1. 1

    in het Panhuis, M., et al., Selective interaction in a polymer-single-wall carbon nanotube composite. Journal of Physical Chemistry B, 2003. 107(2): p. 478–482.

    Article  Google Scholar 

  2. 2

    in het Panhuis, M., R.W. Munn, and W.J. Blau, Optimal polymer characteristics for nanotube solubility. Synthetic Metals, 2001. 121(1–3): p. 1187–1188.

    Article  Google Scholar 

  3. 3

    O’Connell, M.J., et al., Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 2001. 342(3–4): p. 265–271.

    Article  Google Scholar 

  4. 4

    Alexandrou, I., E. Kymakis, and G.A.J. Amaratunga, Polymer-nanotube composites: burying nanotubes improves their field emission properties. Applied Physics Letters, 2002. 80(8): p. 1435–1437.

    CAS  Article  Google Scholar 

  5. 5

    Cadek, M., et al., Reinforcement of Polymers with Carbon Nanotubes: The Role of Nanotube Surface Area. Nano Letters, 2004. 4(2): p. 353–356.

    CAS  Article  Google Scholar 

  6. 6

    Cadek, M., et al., Effect of nanotube type on the enhancement of mechanical properties of free-standing polymer/nanotube composite films. AIP Conference Proceedings, 2003. 685(Molecular Nanostructures): p. 269–272.

    CAS  Article  Google Scholar 

  7. 7

    Cadek, M., et al., Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Applied Physics Letters, 2002. 81(27): p. 5123–5125.

    CAS  Article  Google Scholar 

  8. 8

    Coleman, J.N., et al., Improving the mechanical properties of single-walled carbon nanotube sheets by intercalation of polymeric adhesives. 2003. 82(11): p. 1682–1684.

    CAS  Google Scholar 

  9. 9

    Fournet, P., et al., A carbon nanotube composite as an electron transport layer for M3EH-PPV based light-emitting diodes. Synthetic Metals, 2001. 121(1–3): p. 1683–1684.

    CAS  Article  Google Scholar 

  10. 10

    Kymakis, E., I. Alexandou, and G.A.J. Amaratunga, Single-walled carbon nanotube-polymer composites: electrical, optical and structural investigation. Synthetic Metals, 2002. 127(1–3): p. 59–62.

    CAS  Article  Google Scholar 

  11. 11

    Kymakis, E., I. Alexandrou, and G.A.J. Amaratunga, High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. Journal of Applied Physics, 2003. 93(3): p. 1764–1768.

    CAS  Article  Google Scholar 

  12. 12

    Kymakis, E. and G.A.J. Amaratunga, Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix. Solar Energy Materials and Solar Cells, 2003. 80(4): p. 465–472.

    CAS  Google Scholar 

  13. 13

    Kymakis, E. and G.A.J. Amaratunga, Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Applied Physics Letters, 2002. 80(1): p. 112–114.

    CAS  Article  Google Scholar 

  14. 14

    Prosa, T.J., et al., X-RAY STRUCTURAL STUDIES OF POLY(3-ALKYLTHIOPHENES) - AN EXAMPLE OF AN INVERSE COMB. Macromolecules, 1992. 25(17): p. 4364–4372.

    CAS  Article  Google Scholar 

  15. 15

    Sirringhaus, H., et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999. 401: p. 685–688.

    CAS  Article  Google Scholar 

  16. 16

    Kim, Y., et al., Organic photovoltaic devices based on blends of regioregular poly(3-hexylthiophene) and poly(9.9-dioctylfluorene-co-benzothiadiazole). Chemistry of Materials, 2004. 16(23): p. 4812–4818.

    CAS  Article  Google Scholar 

  17. 17

    Chirvase, D., et al., Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology, 2004. 15(9): p. 1317–1323.

    CAS  Article  Google Scholar 

  18. 18

    Chua, L.-L., et al., General observation of n-type field-effect behaviour in organic semiconductors. Nature, 2005. 434(7030): p. 194–9.

    CAS  Article  Google Scholar 

  19. 19

    Sirringhaus, H., Organic semiconductors: an equal-opportunity conductor. Nature Materials, 2003. 2(10): p. 641–642.

    CAS  Article  Google Scholar 

  20. 20

    Kim, Y., et al., Composition and annealing effects in polythiophene/fullerene solar cells. Journal of Materials Science, 2005. 40(6): p. 1371–1376.

    CAS  Article  Google Scholar 

  21. 21

    Yang, S.F.F., L. Z.; Yang, S. H. J., Langmuir-Blodgett films of poly(3-hexylthiophene) doped with the endohedral metallofullerene Dy@C-82: Preparation, characterization, and application in photoelectrochemical cells. Journal of Physical Chemistry B, 2004. 108(14): p. 4394–4404.

    CAS  Article  Google Scholar 

  22. 22

    Chirvase, D.P., J. Hummelen, J. C.; Dyakonov, V., Nanotechnology, 2004. 15: p. 1317.

    CAS  Article  Google Scholar 

  23. 23

    Choulis, S.A., et al., Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. Applied Physics Letters, 2003. 83(18): p. 3812–3814.

    CAS  Article  Google Scholar 

  24. 24

    Brown, P.J.T., D. S.; Köhler, A.; Wilson, J. S.; Kim, J-S; Ramsdale, C. M.; Sirringhaus, H.; Friend, R. H., Phys. Rev. B, 2003. 67: p. 064203.

    Article  Google Scholar 

  25. 25

    Tsukamoto, J. and J. Mata, Influence of Small Amounts of Dispersed Single-Walled Carbon-Nanotubes on the Optical Properties of Poly-3-hexylthiophene. Japanese Journal of Applied Physics, 2004. 43(2A): p. L214–L216.

    CAS  Article  Google Scholar 

  26. 26

    Brown, P.J., et al., Effect of interchain interactions on the absorption and emission of poly(3-hexyl-thiophene). Physical Review B: Condensed Matter and Materials Physics, 2003. 67(6): p. 064203/1-064203/16.

    CAS  Article  Google Scholar 

  27. 27

    Schwartz, B.J., CONJUGATED POLYMERS AS MOLECULAR MATERIALS: How Chain Conformation and Film Morphology Influence Energy Transfer and Interchain Interactions. ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2003. 54: p. 141–172.

    CAS  Article  Google Scholar 

  28. 28

    Li, G., et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 2005. 4(864-831): p. 01 Nov 2005.

    Google Scholar 

  29. 29

    Star, A., et al., Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes. Angew. Chem. Int. Ed, 2001. 40(9): p. 1721–1725.

    CAS  Article  Google Scholar 

  30. 30

    Kymakis, E. 2003, University of Cambridge.

  31. 31

    Meier, H., U. Stalmach, and H. Kolshorn, Effective Conjugation Length and UV/vis spectra of Oligomers. Acta Polymerica, 1997. 48: p. 379–384.

    CAS  Article  Google Scholar 

  32. 32

    Grévin, B., et al., Multi-scale scanning tunneling microscopy imaging of self-organized regioregular poly(3-hexylthiophene) films. Journal of Chemical Physics, 2003. 118(15): p. 7097–7102.

    Article  Google Scholar 

  33. 33

    Mena-Osteritz, E., et al., Two-Dimensional Crystals of Poly(3-Alkyl-thiophene)s: Direct Visualization of Polymer Folds in Submolecular Resolution. Angew. Chem. Int. Ed, 2000. 39(15): p. 2680–2684.

    CAS  Article  Google Scholar 

  34. 34

    Czerw, R., et al., Organisation of Polymers onto Carbon Nanotubes: A Route to Nanoscale Assembly. Nano Letters, 2001. 1(8): p. 423–427.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roland G. S. Goh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goh, R.G.S., Waclawik, E.R., Motta, N. et al. Complexes of conjugated polymer and carbon nanotubes: does blending with nanotubes influence the ordering of semi-crystalline polymers?. MRS Online Proceedings Library 901, 101 (2005). https://doi.org/10.1557/PROC-0901-Rb21-01

Download citation