LaB6 Nanowires and Their Field Emission Properties


For field-induced electron emission, the two factors that enable a high emission current density at low applied voltages are (a) low work function of the emitter and (b) sharpness of the emitter tip. We have developed and applied a chemical vapor deposition method to synthesize single-crystalline LaB6 nanowires for applications as point electron emitters. The crystallographic orientation of the grown nanowires can be controlled by the catalysts used in synthesis and their typical diameter is ranged from below 20 nm to over 100 nm. The nanowires’ tip is either hemispherical or flat top with rectangular cross-section depending on the catalyst being utilized. The field emission properties have also been measured from the single nanowire emitters and the results are discussed for applications as point electron sources used in high performance electron optical instruments such as the transmission and scanning electron microscopes.

This is a preview of subscription content, access via your institution.


  1. [1]

    M. Gesley, L. W. Swanson, Surface Sci. 146, 583 (1984).

    CAS  Article  Google Scholar 

  2. [2]

    L. W. Swanson, M. A. Gesley, P. R. Davis, Surface Sci. 107, 263 (1981).

    CAS  Article  Google Scholar 

  3. [3]

    I. Brodie, C. A. Spindt, Advances in Electronics and Electron Physics, Vol. 83, (Ed: P. W. Hawkes), Academic Press, San Diego 1992, Ch. 2.

  4. [4]

    L. A. Chernozatonskii, Y. V. Gulyaev, Z. J. Kosakovskaja, N. I. Sinitsyn, G. V. Torgashov, Y. F. Zakharchenko, E. A. Fedorov, V. P. Val’chuk, Chem. Phys. Lett. 233, 63 (1995).

    CAS  Article  Google Scholar 

  5. [5]

    A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science 269, 1550 (1995).

    CAS  Article  Google Scholar 

  6. [6]

    W. A. D. Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995).

    Article  Google Scholar 

  7. [7]

    N. de Jonge, Y. Lamy, K. Schoots, T. H. Oosterkamp, Nature 420, 393 (2002).

    Article  Google Scholar 

  8. [8]

    J. Zhang, J. Tang, G. Yang, Q. Qiu, L.-C. Qin, O. Zhou, Adv. Mater. 16, 1219 (2004).

    CAS  Article  Google Scholar 

  9. [9]

    N. de Jonge, J. M. Bonard, Phil. Trans. R. Soc. Lond. A 362, 2239 (2004).

    Article  Google Scholar 

  10. [10]

    N. de Jonge, M. Allioux, J. T. Oostveen, K. B. K. Teo, W. I. Milne, Phys. Rev. Lett. 94, 186807 (2005).

    Article  Google Scholar 

  11. [11]

    J. H. Hafner, C. L. Cheung, T. H. Oosterkamp, C. M. Lieber, J. Phys. Chem. B 105, 743 (2001).

    CAS  Article  Google Scholar 

  12. [12]

    K. A. Dean, B. R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999).

    CAS  Article  Google Scholar 

  13. [13]

    J.M. Lafferty, J. Appl. Phys. 22, 299 (1951).

    CAS  Article  Google Scholar 

  14. [14]

    H. Zhang, J. Tang, Q. Zhang, G. Zhao, G. Yang, J. Zhang, O. Zhou, L.-C. Qin, Adv. Mater. (2006) in press.

Download references

Author information



Corresponding author

Correspondence to Han Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, H., Tang, J., Zhang, Q. et al. LaB6 Nanowires and Their Field Emission Properties. MRS Online Proceedings Library 901, 506 (2005).

Download citation