Skip to main content
Log in

Ordered and parallel niobium oxide nano-tubes fabricated using Atomic Layer Deposition in anodic alumina templates

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Amorphous niobium oxide (Nb2O5) nano-tubes were fabricated inside anodic alumina templates using atomic layer deposition (ALD). The nanoporous templates were in-house fabricated anodic alumina membranes having an inter-pore distance of about 100 nm with pores lengths of 2 µm. The pores were parallel and well ordered in a hexagonal pattern. Atomic layer deposition was performed using gas pulses of niobium iodide (NbI5) and oxygen separated by purging pulses of argon. By employing long gas pulses (30 s) it was possible to get coherent and amorphous Nb2O5 films conformally covering the pore-walls of the alumina template. The outer diameter of the nano-tubes was tailored between 40 and 80 nm by using alumina templates with different pore sizes. By using template membranes with pores not opened in the bottom, nano-tubes with one side closed could be fabricated. Free-standing, and still parallel, nano-tubes could be obtained by selectively etching away the alumina template using phosphoric acid. Using the above mentioned procedure it was possible to fabricate unsurpassed parallel niobium oxide nano-tubes of equal length, diameter and wall-thickness, ordered in a perfect hexagonal pattern. The samples were analysed using high resolution scanning electron microscopy (HR-SEM), transmission electron microscopy (TEM), electron diffraction and x-ray fluorescence spectroscopy (XRFS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  CAS  Google Scholar 

  2. M. Remškar and A. Mrzel, Vacuum 71, 177 (2003)

    Article  Google Scholar 

  3. L. Qu, Q. Shi, X. Wu and B. Fan, Adv. Mater. 16, 1200 (2004)

    Article  CAS  Google Scholar 

  4. A. Johansson, E. Widenkvist, J. Lu, M. Boman and U. Jansson, Nano Lett. 5, 1603 (2005)

    Article  CAS  Google Scholar 

  5. G. S. Wu, Y. Lin, X. Y. Yuan, T. Xie, B. C. Cheng and L. D. Zhang, Nanotechnology 15, 568 (2004)

    Article  CAS  Google Scholar 

  6. H. Shin, D. K. Jeong, J. Lee, M. M. Sung and J. Kim, Adv. Mater 16, 1197 (2004)

    Article  CAS  Google Scholar 

  7. N. Özer, M. D. Rubin and C. M. Lampert, Sol. Energy Mater. Sol. Cells 40, 285 (1996)

    Article  Google Scholar 

  8. T. Ushikubo, Catal. Today, 57, 331 (2000)

    Article  CAS  Google Scholar 

  9. G. Barkhordarian, T. Klassen and R. Bormann, Scripta Mater. 49, 213 (2003)

    Article  CAS  Google Scholar 

  10. J. Shirakashi, K. Matsumoto, N. Miura and M. Konagai, Jpn. J. Appl. Phys. 36, L1120 (1997)

    Article  Google Scholar 

  11. J. J. Van Glabbeek and R. E. Van de Leest, Thin Solid Films 201, 137 (1991)

    Article  Google Scholar 

  12. C. M. Lampert, Sol. Energy Mater. 11, 1 (1984)

    Article  CAS  Google Scholar 

  13. D. Rosenfeld, P. E.Schmid, S. Szeles, F. Levy, V. Demarne and A. Grisel, Sens. Actuators B 37, 83 (1996)

    Article  CAS  Google Scholar 

  14. B. Hunsche, M. Vergöhl, H. Neuhäuser, F. Klose, B. Szyszka and T. Matthee, Thin Solid Films 392, 184 (2001)

    Article  CAS  Google Scholar 

  15. Z. -W. Fu, J. -J. Kong and Q. -Z. Qin, J. Electrochem. Soc. 146, 3914 (1999)

    Article  CAS  Google Scholar 

  16. R. Romero, J. R. Ramos-Barrado, F. Martin and D. Leinen, Surf. Interface Anal. 36, 888 (2004)

    Article  CAS  Google Scholar 

  17. M. Schmitt, S. Heusing, M. A. Aegerter, A. Pawlicka and C. Avellaneda, Sol. Energy Mater. Sol. Cells 54, 9 (1998)

    Article  CAS  Google Scholar 

  18. S. -C. Jung, N. Imaishi and H. -C. Park, Jpn. J. Appl. Phys. 34, L775 (1995)

    Article  CAS  Google Scholar 

  19. P. A. Williams, A. G. Jones, P. J. Wright, M. J. Crosbie, J. F. Bickley, A. Steiner, H. O. Davies and T. J. Leedham, Chem. Vap. Deposition 8, 110 (2002)

    Article  CAS  Google Scholar 

  20. K. Kukli, M. Ritala, M. Leskelä and R. Lappalainen, Chem. Vap. Deposition 4, 29 (2002)

    Article  Google Scholar 

  21. M. Rooth, K. Kukli and A. Hårsta, in EUROCVD 15, Proc. Vol. 2005–09, Eds.: A. Devi, R. Fischer, H. Parala, M. Allendorf and M. Hitchman (The Electrochem. Soc., Pennington, N. J. 2005) p. 598.

  22. H. Masuda and K. Fukuda, Science 268, 1466 (1995)

    Article  CAS  Google Scholar 

  23. J. Sundqvist, A. Hårsta, J. Aarik, K. Kukli and A. Aidla, Thin Solid Films 427, 147 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rooth, M., Johansson, A., Boman, M. et al. Ordered and parallel niobium oxide nano-tubes fabricated using Atomic Layer Deposition in anodic alumina templates. MRS Online Proceedings Library 901, 405 (2005). https://doi.org/10.1557/PROC-0901-Ra24-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0901-Ra24-05

Navigation