Relation Between Structure and Diffusion in Nanostructured Porous Solids and in Lipid Membranes

Abstract

Pulsed field gradient (PFG) NMR technique has been applied to study molecular transport in two different types of nanostructured materials, viz. in fluid catalytic cracking (FCC) catalysts and in lipid membranes. Diffusion studies have been performed for a broad range of molecular displacements covering displacements that are as small as a fraction of a micron. The effective diffusivities recorded on various length scales are used to evaluate the relevance of various transport modes in the particles of FCC catalysts for the rate of molecular exchange between catalyst particles and the surrounding atmosphere. This rate is shown to be primarily related to the diffusion in the meso- and macropores of the particles under the condition of fast molecular exchange between these pores and the zeolite crystals located in the particles. Studies of lipid membranes are focused on developing fundamental understanding of the influence of various types of domains on lateral mobility of lipids. A meaningful study of this influence requires an ability of monitoring lipid diffusion for different displacements that are smaller and larger than the domain size. First PFG NMR data along this direction are presented.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. Kortunov, S. Vasenkov, J. Kärger, et al., Chem. Mater 17, 2466 (2005).

    CAS  Article  Google Scholar 

  2. 2.

    Fluid Catalytic Cracking V. Materials and Technological Innovations, ed. M. L. Ocelli and P. O’Connor, (Elsevier, Amsterdam, 2001).

  3. 3.

    W. H. Binder, V. Barragan, and F. M. Menger, Angew. Chem. Int. Ed. 42, 5802 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    P. F. Devaux and R. Morris, Traffic 5, 241 (2004).

    CAS  Article  Google Scholar 

  5. 5.

    J. Kärger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids (Wiley & Sons, New York, 1992).

    Google Scholar 

  6. 6.

    P. T. Callaghan, Principles of NMR Microscopy (Clarendon Press, Oxford, 1991).

    Google Scholar 

  7. 7.

    B. Blümich, NMR Imaging of Materials (Clarendon Press, Oxford, 2000).

    Google Scholar 

  8. 8.

    P. Galvosas, F. Stallmach, G. Seiffert, et al., J. Magn. Reson. 151, 260 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    R. M. Cotts, M. J. R. Hoch, T. Sun, et al., J. Magn. Reson. 83, 252 (1989).

    CAS  Google Scholar 

  10. 10.

    G. Oradd and G. Lindblom, Magn. Reson. Chem. 42, 123 (2004).

    Article  Google Scholar 

  11. 11.

    G. Oradd, P. W. Westerman, and G. Lindblom, Biophys. J. 89, 315 (2005).

    Article  Google Scholar 

  12. 12.

    A. Filippov, G. Oradd, and G. Lindblom, Biophys. J. 86, 891 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    C. Berger, R. Gläser, R. A. Rakoczy, et al., Microporous Mesoporous Mater. 83, 333 (2005).

    CAS  Article  Google Scholar 

  14. 14.

    O. Geier, S. Vasenkov, and J. Karger, J. Chem. Phys. 117, 1935 (2002).

    CAS  Article  Google Scholar 

  15. 15.

    N. Kahya, D. Scherfeld, K. Bacia, et al., J. Biol. Chem. 78, 28109 (2003).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergey Vasenkov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vasenkov, S., Kärger, J. Relation Between Structure and Diffusion in Nanostructured Porous Solids and in Lipid Membranes. MRS Online Proceedings Library 899, 802 (2005). https://doi.org/10.1557/PROC-0899-N08-02

Download citation