Water Mobility in Reverse Micelles Studied by Quasielastic Neutron Scattering and Molecular Dynamics Simulation

Abstract

Reverse micelles (RMs) are aggregates in which nanoscale droplets of a polar liquid, usually water, are surrounded by a surfactant layer in a nonpolar continuous phase. They are widely used as media for reactions in which the extent of confinement or the presence of a surfactant interface play a central role. We have used molecular dynamics (MD) computer simulation and quasielastic neutron scattering (QENS) and to investigate the mobility of water molecules in reverse micelles. The contribution of water to the QENS signal is enhanced by deuterating the surfactant and the nonpolar phase. Our studies of water mobility have focused on the effects of water pool size, determined by the water/surfactant mole ratios w 0, as well as on the properties of the water-surfactant interface. Specifically, we have examined the effects of varying w 0 and of substituting other alkali ions for the usual Na+ counterion of the anionic surfactant AOT (bis (2-ethylhexyl) sulfosuccinate)). We find good agreement between the QENS signal and its prediction from MD simulation. This allows us to obtain additional insight into water mobility by analyzing the MD self-intermediate scattering function (ISF) of water hydrogens in terms of contributions from molecular rotation and translation and from molecules in different interfacial layers. MD data indicate that the translational ISF decays nonexponentially due to lower water mobility close to the interface and to confinement-induced restrictions on the range of translational displacements. Rotational relaxation also exhibits nonexponential decay. However, rotational mobility of O-H bond vectors in the interfacial region remains fairly high due to the lower density of water-water hydrogen bonds in the vicinity of the interface.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    M. P. Pileni, Journal of Physical Chemistry 97, 6961 (1993).

    CAS  Article  Google Scholar 

  2. 2.

    P. L. Luisi and B. E. Straub, Reverse Micelles: Biological and Technological Relevance of Amphiphilic Structures in Apolar Media. (Plenum, New York, 1984).

    Google Scholar 

  3. 3.

    A. Amararene, M. Gindre, J. Y. LeHuerou, C. Nicot, W. Urbach, and M. Waks, J. Phys. Chem. B 101, 10751 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    P. Amico, M. D’Angelo, G. Onori, and A. Santucci, Nuovo Cimento 17, 1053 (1995).

    Article  Google Scholar 

  5. 5.

    C. A. Boicelli, M. Giomini, and A. M. Giuliani, Appl. Spec. 38, 537 (1984).

    CAS  Article  Google Scholar 

  6. 6.

    J. B. Brubach, A. Mermet, A. Filabozzi, A. Gerschel, D. Lairez, M. P. Krafft, and P. Roy, J. Phys. Chem. B 105, 430 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    M. D’Angelo, D. Fioretto, G. Onori, L. Palmieri, and A. Santucci, Phys. Rev. E 54, 993 (1996).

    Article  Google Scholar 

  8. 8.

    D. S. Venables, K. Huang, and C. A. Schmuttenmaer, J. Phys. Chem. B 105, 9132 (2001).

    CAS  Article  Google Scholar 

  9. 9.

    M. Bée, Quasielastic Neutron Scattering. (Hilger, Bristol, 1988).

  10. 10.

    M. R. Harpham, B. M. Ladanyi, N. E. Levinger, and K. W. Herwig, J. Chem. Phys. 121, 7855 (2004).

    CAS  Article  Google Scholar 

  11. 11.

    K. W. Herwig, W. D. Dozier, and J. S. Huang, Mater. Res. Using Cold Neutrons Pulsed Neutron Sources, [Proc.], 95 (1999).

  12. 12.

    M. C. Bellissent-Funel, S. H. Chen, and J. M. Zanotti, Phys. Rev. E 51, 4558 (1995).

    CAS  Article  Google Scholar 

  13. 13.

    M. C. Bellissent-Funel, J. Mol. Liq. 78, 19 (1998).

    CAS  Article  Google Scholar 

  14. 14.

    J. M. Zanotti, M. C. Bellissent-Funel, and S. H. Chen, Phys. Rev. E: 59, 3084 (1999).

    CAS  Article  Google Scholar 

  15. 15.

    V. Crupi, D. Majolino, P. Migliardo, and V. Venuti, J. Phys. Chem. B 106, 10884 (2002).

    CAS  Article  Google Scholar 

  16. 16.

    V. Crupi, D. Majolino, P. Migliardo, and V. Venuti, Philos. Mag. B 82, 425 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    S. Mitra, R. Mukhopadhyay, K. T. Pillai, and V. N. Vaidya, J. Non-Cryst. Solids 235, 229 (1998).

    Article  Google Scholar 

  18. 18.

    S. Mitra, R. Mukhopadhyay, K. T. Pillai, and V. N. Vaidya, Solid State Commun. 105, 719 (1998).

    CAS  Article  Google Scholar 

  19. 19.

    S. Mitra, R. Mukhopadhyay, I. Tsukushi, and S. Ikeda, J. Phys.-Condens. Matter 13, 8455 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    T. Takamuku, M. Yamagami, H. Wakita, Y. Masuda, and T. Yamaguchi, J. Phys. Chem. B 101, 5730 (1997).

    CAS  Article  Google Scholar 

  21. 21.

    S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, and T. Yamaguchi, J. Phys. Chem. B 103, 5814 (1999).

    CAS  Article  Google Scholar 

  22. 22.

    S. H. Chen, P. Gallo, and M. C. Bellissent-Funel, Can. J. Phys. 73, 703 (1995).

    CAS  Article  Google Scholar 

  23. 23.

    A. Faraone, L. Liu, C. Y. Mou, P. C. Shih, J. R. D. Copley, and S. H. Chen, J. Chem. Phys. 119, 3963 (2003).

    CAS  Article  Google Scholar 

  24. 24.

    F. Venturini, P. Gallo, M. A. Ricci, A. R. Bizzarri, and S. Cannistraro, Philos. Mag. B 82, 507 (2002).

    CAS  Google Scholar 

  25. 25.

    V. Venuti, V. Crupi, S. Magazu, D. Majolino, P. Migliardo, and M. C. Bellissent-Funel, J. Phys. IV 10, 211 (2000).

    Google Scholar 

  26. 26.

    J. Teixeira, Nuovo Cimento 16, 1433 (1994).

    Article  Google Scholar 

  27. 27.

    P. Gallo, M. Rovere, and E. Spohr, J. Chem. Phys. 113, 11324 (2000).

    CAS  Article  Google Scholar 

  28. 28.

    P. Gallo, Phys.l Chem. Chem. Phys. 2, 1607 (2000).

    CAS  Article  Google Scholar 

  29. 29.

    P. Gallo, M. Rapinesi, and M. Rovere, J. Chem. Phys. 117, 369 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    P. Gallo, M. A. Ricci, and M. Rovere, J. Chem. Phys. 116, 342 (2002).

    CAS  Article  Google Scholar 

  31. 31.

    M. Rovere, M. A. Ricci, D. Vellati, and F. Bruni, J. Chem. Phys. 108, 9859 (1998).

    CAS  Article  Google Scholar 

  32. 32.

    S. H. Chen, P. Gallo, F. Sciortino, and P. Tartaglia, Phys. Rev. E 56, 4231 (1997).

    CAS  Article  Google Scholar 

  33. 33.

    A. Faraone, L. Liu, and S. H. Chen, J. Chem. Phys. 119, 6302 (2003).

    CAS  Article  Google Scholar 

  34. 34.

    H. F. Eicke and J. Rehak, Helv. Chim. Acta 59, 2883 (1976).

    CAS  Article  Google Scholar 

  35. 35.

    M. R. Harpham, B. M. Ladanyi, and N. E. Levinger, J. Phys. Chem. B 109, 16891 (2005).

    CAS  Article  Google Scholar 

  36. 36.

    D. Di Cola, A. Deriu, M. Sampoli, and A. Torcini, J. Chem. Phys. 104, 4223 (1996).

    CAS  Article  Google Scholar 

  37. 37.

    P. A. Egelstaff, An Introduction to the Liquid State. (Academic, London, 1967).

    Google Scholar 

  38. 38.

    F. Volino and A. J. Dianoux, Mol. Phys. 41, 271 (1980).

    CAS  Article  Google Scholar 

  39. 39.

    V. F. Sears, Can. J. Phys. 45, 237 (1967).

    CAS  Article  Google Scholar 

  40. 40.

    J. Faeder and B. M. Ladanyi, J. Phys. Chem. B 104, 1033 (2000).

    CAS  Article  Google Scholar 

  41. 41.

    C. Y. Lee, J. A. McCammon, and P. J. Rossky, J. Chem. Phys. 80, 4448 (1984).

    CAS  Article  Google Scholar 

  42. 42.

    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    CAS  Article  Google Scholar 

  43. 43.

    K. J. Schweighofer, U. Essmann, and M. Berkowitz, J. Phys. Chem. B 101, 10775 (1997).

    CAS  Article  Google Scholar 

  44. 44.

    L. X. Dang, J. Am. Chem. Soc. 117, 6954 (1995).

    CAS  Article  Google Scholar 

  45. 45.

    J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and A. J. Dianoux, Phys. Rev. A 31, 1913 (1985).

    CAS  Article  Google Scholar 

  46. 46.

    H. S. Tan, I. R. Piletic, and M. D. Fayer, J. Chem. Phys. 122 (2005).

  47. 47.

    R. M. Lynden-Bell and W. A. Steele, J. Phys. Chem. 88, 6514 (1984).

    CAS  Article  Google Scholar 

  48. 48.

    M. Tarek and D. J. Tobias, Biophys. J. 79, 3244 (2000).

    CAS  Article  Google Scholar 

  49. 49.

    J. Faeder, M. V. Albert, and B. M. Ladanyi, Langmuir 19, 2514 (2003).

    CAS  Article  Google Scholar 

  50. 50.

    S. Senapati and M. L. Berkowitz, J. Phys. Chem. A 108, 9768 (2004).

    CAS  Article  Google Scholar 

  51. 51.

    J. Eastoe, T. F. Towey, B. H. Robinson, J. Williams, and R. K. Heenan, J. Phys. Chem. 97, 1459 (1993).

    CAS  Article  Google Scholar 

  52. 52.

    D. Fioretto, M. Freda, S. Mannaioli, G. Onori, and A. Santucci, J. Phys. Chem. B 103, 2631 (1999).

    CAS  Article  Google Scholar 

  53. 53.

    D. Fioretto, M. Freda, G. Onori, and A. Santucci, J. Phys. Chem. B 103, 8216 (1999).

    CAS  Article  Google Scholar 

  54. 54.

    R. E. Riter, E. P. Undiks, and N. E. Levinger, J. Am. Chem. Soc. 120, 6062 (1998).

    CAS  Article  Google Scholar 

  55. 55.

    D. Pant, R. E. Riter, and N. E. Levinger, J. Chem. Phys. 109, 9995 (1998).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ladanyi, B., Levinger, N. Water Mobility in Reverse Micelles Studied by Quasielastic Neutron Scattering and Molecular Dynamics Simulation. MRS Online Proceedings Library 899, 501 (2005). https://doi.org/10.1557/PROC-0899-N05-01

Download citation