High-Throughput Screening of Barrier and Adhesive Behavior of Polymeric Coatings

Abstract

A combinatorial factory for the preparation and screening of polymeric coatings was developed. Coating formulations were prepared and coated using novel combinatorial techniques to obtain libraries of varying composition and thickness. The thickness of each film in a combinatorial array is rapidly determined via visible-light absorbance of optical dyes in conjunction with the Beer-Lambert relationship. These combinatorial libraries were then tested and screened using a variety of custom-made high-throughput methods. Combinatorial screening of oxygen and moisture vapor transmission rate, along with adhesive properties, are shown here. OTR and MVTR are determined using spectroscopic techniques. For adhesion, a spherical probe adhesive tester is able to generate parameters linked to tack, peel, and shear in one measurement. In addition to describing the testing methodology, benefits and shortcomings of these techniques will be highlighted.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. P. Devlin, High Throughput Screening: The Discovery of Bioactive Substances (Marcel Dekker, 1997).

  2. 2.

    P. M. Doyle, J. Chem. Technol. Biotech. 64, 317 – 324 (1995).

    CAS  Article  Google Scholar 

  3. 3.

    E. M. Gordon and J. F. Kerwin, Jr., Combinatorial Chemistry and Molecular Diversity in Drug Discovery (Wiley, 1998).

  4. 4.

    M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas, F. J. Romero, and F. J. Urbano, J. Catalysis 209, 413 – 416 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    J. C. Meredith, A. Karim, and E. J. Amis, MRS Bulletin 27, 330 – 335 (2002).

    CAS  Article  Google Scholar 

  6. 6.

    D. Sadagopan and R. Pitchumani, J. Mech. Design 119 494 – 503 (1997).

    Article  Google Scholar 

  7. 7.

    M. A. Del Nobile, P. Fava, and L. Piergiovanni, J. Food Eng. 53, 295 – 300 (2002).

    Article  Google Scholar 

  8. 8.

    A. M. Brennan, TAPPI 75, 145 – 148 (1992).

    CAS  Google Scholar 

  9. 9.

    D. S. Yoon and J. S. Roh, Adv. Func. Mater. 12, 373 – 381 (2002).

    CAS  Article  Google Scholar 

  10. 10.

    P. W. Morgan, Ind. Eng. Chem. 45, 2296 – 2306 (1953).

    CAS  Article  Google Scholar 

  11. 11.

    S. Motegi, Bull. Jap. Soc. Sci. Fish. 45, 205 – 209 (1979).

    CAS  Article  Google Scholar 

  12. 12.

    J. H. Park, D. H. Hong, Y. B. Kim, and D. K. Choi, J. Appl. Phys. 91, 10022 – 10027 (2002).

    CAS  Article  Google Scholar 

  13. 13.

    I. M. Raimundo and R. Narayanaswamy, Analyst 124, 1623 – 1627 (1999).

    CAS  Article  Google Scholar 

  14. 14.

    T. E. Brook, R. Taib, and R. Narayanasawamy, Sensors and Actuators B 38–39, 272 – 276 (1997).

    Article  Google Scholar 

  15. 15.

    S. Otsuki, K. Adachi, and T. Taguchi, Sensors and Actuators B 53, 91 – 96 (1998).

    CAS  Article  Google Scholar 

  16. 16.

    Y. Sadoaka, M. Matsuguchi, Y. Sakai, and Y. Murata, Sensors and Actuators B 7, 443 – 446 (1992).

    Article  Google Scholar 

  17. 17.

    Y. Sadoaka, M. Matsuguchi, Y. Sakai, Y. Murata, J. Mater. Sci. 27, 5095 – 5100 (1992).

    Article  Google Scholar 

  18. 18.

    M. M. F. Choi and O. L. Tse, Anal. Chim. Acta 378, 127 – 134 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    Y. Rharbi, A. Yekta, and M. A. Winnik, Anal. Chem. 71, 5045 – 5053 (1999).

    CAS  Article  Google Scholar 

  20. 20.

    Y. Amao, K. Asai, I. Okura, H. Shinohara, and H. Nishide, Analyst 125, 1911 – 1914 (2000).

    CAS  Article  Google Scholar 

  21. 21.

    P. Hartmann, and W. Tettnak, Anal. Chem. 68, 2615 – 2620 (1996).

    CAS  Article  Google Scholar 

  22. 22.

    W. K. R. Barnikol, Th. Gaertner, and N. Weiler, Rev. Sci. Instr. 59, 1204 – 1208 (1988).

    CAS  Article  Google Scholar 

  23. 23.

    E. R. Carraway, J. N. Demas, B. A. DeGraff, Langmuir 7, 2991 – 2998 (1991).

    CAS  Article  Google Scholar 

  24. 24.

    J. C. Grunlan, A. R. Mehrabi, A. T. Chavira, A. B. Nugent, and D. L. Saunders, J. Combi. Chem. 5, 362–368 (2003).

    CAS  Article  Google Scholar 

  25. 25.

    J. C. Grunlan, D. Saunders, J. Akhave, M. Licon, M. Murga, A. Chavira, and A. R. Mehrabi in High-Throughput Analysis, edited by R. A. Potyrailo and E. J. Amis (Kluwer Academic, 2003) Ch. 14.

  26. 26.

    H. K. Chuang, C. Chiu, and R. Paniagua, Adhesives Age 40, 18 – 23 (1997).

    Google Scholar 

  27. 27.

    J. C. Grunlan, D. L. Holguin, H. K. Chuang, I. Perez, A. Chavira, R. Quilatan, J. Akhave, and A. R. Mehrabi, Macromolecular Rapid Comm. 25, 286 – 291 (2004).

    CAS  Article  Google Scholar 

  28. 28.

    J. C. Grunlan, A. R. Mehrabi, and T. Ly, Meas. Sci. Technol. 16, 153 – 161 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Initial MHTS experiments used a simple linear extrapolation from only one reference film, rather than the multiple reference polynomial fit used more recently. This linear approximation is only valid when the sample of interest has an MVTR within 10% of the reference film being used.

  30. 30.

    R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fan, A. Chavira, and A. K. Thompson, Polymer 43, 3699 – 3705 (2002).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaime C. Grunlan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grunlan, J.C., Mehrabi, A.R. High-Throughput Screening of Barrier and Adhesive Behavior of Polymeric Coatings. MRS Online Proceedings Library 894, 0894002 (2005). https://doi.org/10.1557/PROC-0894-LL04-02

Download citation