Emerging Magnetism Arising from Self Damage in α- and δ-Pu


As a consequence of the unusual nature of plutonium’s electronic structure, point- and extended-defects are expected to, and do exhibit extraordinary properties. Low temperature magnetic susceptibility measurements on Pu and fcc-Pu(Ga) show that the magnetic susceptibility increases as a function of time, yet upon annealing the specimen returns to its initial magnetic susceptibility. This excess magnetic susceptibility (EMS) arises from the alpha-decay and U recoil damage cascades which produce vacancy and interstitials as point and extended defects. The temperature of the first annealing stage defines a temperature (<35K) below which we are able to characterize the time and temperature evolution of the accumulating damage cascades as being a saturation function. The temperature dependence of the EMS is well described by a time independent, Curie-Weiss curve arising from a volumetric region surrounding each U damage cascade. This saturation picture also leads directly to a determination of the microscopic volume of the specimen that is affected by the frozen-in damage cascade. For our measurements in δ-Pu we calculate a diameter of the magnetically affected volume of ∼250Å per damage cascade. This should be compared with an estimated volume that encloses the damage cascade itself (determined from molecular dynamics) of ∼100 Å. Hence, the ratio of these volumes is ∼8. The observed anomalous magnetic behavior is likely a consequence of the highly correlated nature of the electrons. Similarities with defects in hole-doped superconductors suggest a general phenomenon in strongly correlated electron systems, of which Pu may be a particularly unusual or special example.

This is a preview of subscription content, access via your institution.


  1. [1]

    A. O. Shorikov, A. V. Lukoyanov, M. A. Korotin, V. I. Anisimov, Phys. Rev. B 72 024458 (2005).

    Article  Google Scholar 

  2. [2]

    P. Soderlind, A. Landa, B. Sadigh, Phys. Rev. B 66 205109 (2002).

    Article  Google Scholar 

  3. [3]

    P. Soderlind, B. Sadigh, Phys. Rev. Lett. 92 185702 (2004).

    Article  Google Scholar 

  4. [4]

    S. Y. Savrasov, G. Kotliar, Phys. Rev. Lett. 84 3670 (2000).

    CAS  Article  Google Scholar 

  5. [5]

    S. Y. Savrasov, G. Kotliar, E. Abrahams, Nature 410 793 (2001).

    CAS  Article  Google Scholar 

  6. [6]

    J. Bouchet, B. Siberchicot, F. Jollet, A. Pasturel, J. Phys.: Condens. Matter 12 1723 (2000).

    CAS  Google Scholar 

  7. [7]

    A. B. Shick, V. Drchal, L. Havela, Europhys. Lett. 69 588 (2005).

    CAS  Article  Google Scholar 

  8. [8]

    G. Robert, A. Pasturel, B. Siberchicot, J. Phys.: Condens. Matter 8377 (2003).

    Google Scholar 

  9. [9]

    J. C. Lashley, A. Lawson, R. J. McQueeney, G. H. Lander, Phys. Rev. B 72 054416 (2005).

    Article  Google Scholar 

  10. [10]

    J. C. Lashley, A. Migliori, J. Singleton, R. McQueeney, M. S. Blau, R. A. Pereyra, J. L. Smith, JOM-Journal of the Minerals Metals & Materials Society 55 34 (2003).

    CAS  Article  Google Scholar 

  11. [11]

    W. G. Wolfer, Los Alamos Science 26 274 (2000).

    CAS  Google Scholar 

  12. [12]

    D. A. Wigley, Proc. R. Soc. London, A 284 344 (1965).

    Google Scholar 

  13. [13]

    J. A. Lee, K. Mendelssohn, D. A. Wigley, Phys. Lett. A 1 325 (1962).

    CAS  Article  Google Scholar 

  14. [14]

    M. J. Mortimer, J. A. C. Marples, J. A. Lee, Int. Met. Rev. 20 109 (1975).

    CAS  Article  Google Scholar 

  15. [15]

    M. J. Fluss, B. D. Wirth, M. Wall, T. E. Felter, M. J. Caturla, A. Kubota, T. D. de la Rubia, J. Alloys Compd. 368 62 (2004).

    CAS  Article  Google Scholar 

  16. [16]

    F. Rullier-Albenque, H. Alloul, R. Tourbot, Phys. Rev. Lett. 91 047001 (2003).

    CAS  Article  Google Scholar 

  17. [17]

    J.-M. Fournier, R. Troc, Bulk Properties of the Actinides, in: A. J. Freeman, G. H. Lander (Eds.), Handbook on the Physics and Chemistry of the Actinides, vol 2, North-Holland, New York, 1985.

    Google Scholar 

  18. [18]

    A. Blaise, J.-M. Fournier, Solid State Commun. 10 141 (1972).

    Article  Google Scholar 

  19. [19]

    C. E. Olsen, A. L. Comstock, T. A. Sandenaw, J. Nucl. Mater. 195 312 (1992).

    CAS  Article  Google Scholar 

  20. [20]

    A. M. Clogston, B. T. Matthias, M. Peter, H. J. Williams, E. Corenzwit, R. C. Sherwood, Physical Review 125 541 (1962).

    CAS  Article  Google Scholar 

  21. [21]

    P. Boulet, E. Colineau, P. Javorsky, F. Wastin, J. Rebizant, J. Alloys Compd. 394 93 (2005).

    CAS  Article  Google Scholar 

  22. [22]

    P. Boulet, E. Colineau, F. Wastin, P. Javorsky, J. C. Griveau, J. Rebizant, G. R. Stewart, E. D. Bauer, Phys. Rev. B 72 64438 (2005).

    Article  Google Scholar 

  23. [23]

    S. Meot-Reymond, J. M. Fournier, J. Alloys Compd. 232 119 (1996).

    CAS  Article  Google Scholar 

  24. [24]

    S. McCall, M. J. Fluss, B. W. Chung, M. W. McElfresh, G. F. Chapline, D. J. Jackson, Materials Science Transactions 8 35 (2005).

    Google Scholar 

  25. [25]

    D. J. Lam, S. K. Chan, Physical Review B (Solid State) 6 307 (1972).

    Article  Google Scholar 

  26. [26]

    K. T. Moore, M. A. Wall, A. J. Schwartz, B. W. Chung, D. K. Shuh, R. K. Schulze, J. G. Tobin, Phys. Rev. Lett. 90 196404/1 (2003).

    CAS  Article  Google Scholar 

  27. [27]

    G. van der Laan, K. T. Moore, J. G. Tobin, B. W. Chung, M. A. Wall, A. J. Schwartz, Phys. Rev. Lett. 93 097401/1 (2004).

    Article  Google Scholar 

  28. [28]

    K. Kubo, T. Hotta, Phys. Rev. B 72 144401 (2005).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. McCall.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

McCall, S., Fluss, M.J., Chung, B.W. et al. Emerging Magnetism Arising from Self Damage in α- and δ-Pu. MRS Online Proceedings Library 893, 8930403 (2005). https://doi.org/10.1557/PROC-0893-JJ04-03

Download citation