Skip to main content
Log in

A First-Principles Study of the (001), (111) and (110) Surfaces of δ-Pu

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Full-potential linearized-augmented-plane-wave (FP-LAPW) calculations for δ-Pu films up to seven layers at the ground antiferromagnetic state including spin-orbit coupling effects reveal that surface energy rapidly converges and the semi-infinite surface energy is predicted to be 1.18, 1.21, and 1.42 J/m2 for δ-Pu (111), (001), and (110) films, respectively. Density of states show that the 5f electrons of the three surfaces tend to be localized with a sequence of (111)→(001)→(110). It is also predicted that the work function of δ-Pu (110) films exhibits a quantum size effect up to seven layers, while the work functions of δ-Pu (001) and (111) films show some oscillations when the number of layers is less than five, while it becomes relatively stable when the number of layers is greater than five. In addition, the work functions are predicted to be 3.41, 3.11, and 2.99 eV for δ-Pu (111), (001), and (110) films at the ground state, respectively. Comparisons with available experimental and theoretical results in the literature show good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Katz, G. T. Seaborg, and L. R. Morss, The Chemistry of the Actinide Elements (Chapman and Hall, 1986);

    Book  Google Scholar 

  2. L. R. Morss and J. Fuger, Eds. Transuranium Elements: A Half Century (American Chemical Society, Washington, D. C. 1992);

  3. J. J. Katz, L. R. Morss, J. Fuger, and N. M. Edelstein, Eds. Chemistry of the Actinide and Transactinide Elements (Springer-Verlag, New York, in press);

  4. K. K. S. Pillay and K. C. Kim, Eds. Plutonium Futures – The Science, American Institute of Physics Conference Proceedings, 532 (2000);

  5. G. D. Jarvinen, Ed. Plutonium Futures – The Science, American Institute of Physics Conference Proceedings, 673 (2003).

  6. S. Y. Savrasov, G. Kotliar and E. Abrahams, Nature 410, 793 (2001);

    Article  CAS  Google Scholar 

  7. X. Dai, S. Y. Savrasov, G. Kotliar, A. Migliori, H. Ledbetter, and E. Abrahams, Science 300, 953 (2003);

    Article  CAS  Google Scholar 

  8. J. Wong, M. Krisch, D. L. Farber, F. Occelli, A. J. Schwartz, T.-C. Chiang, M. Wall, C. Boro, and R. Xu, Science 301, 1078 (2003);

    Article  CAS  Google Scholar 

  9. P. Söderlind and B. Sadigh, Phys. Rev. Lett. 92, 185702 (2004);

    Article  Google Scholar 

  10. P. Söderlind, O. Eriksson, B. Johansson, and J.M. Wills, Phys. Rev. B 55, 1997 (1997);

    Article  Google Scholar 

  11. B. Sadigh, P. Söderlind, and W. G. Wolfer, Phys. Rev. B 68, 241101(R) (2003);

    Article  Google Scholar 

  12. S. Heathman, R. G. Haire, T. Le Bihan, A. Lindbaum, K. Litfin, Y. Meresse, and H. Libotte, Phys. Rev. Lett. 85, 2961 (2000).

    Article  CAS  Google Scholar 

  13. A. K. Ray and J. C. Boettger, Eur. Phys. J. B 27, 429 (2002); Phys. Rev. B 70, 085418 (2004);

    Article  CAS  Google Scholar 

  14. J. C. Boettger and A. K. Ray, Int. J. Quant. Chem., 105, 564 (2005);

    Article  CAS  Google Scholar 

  15. X. Wu and A. K. Ray, Phys. Rev. B 72, 045115 (2005);

    Article  Google Scholar 

  16. M. N. Huda and A. K. Ray, Eur. Phys. J. B 40, 337 (2004); Physica B 352, 5 (2004); Eur. Phys. J. B 43, 131 (2005); Physica B 366, 95 (2005); Phys. Rev. B 72, 085101 (2005); Int. J. Quant. Chem. 105, 280 (2005);

    Article  CAS  Google Scholar 

  17. H. R. Gong and A. K. Ray, Eur. Phys. J. B, 48, 409 (2005);

    Article  CAS  Google Scholar 

  18. D. Gao and A. K. Ray, Eur. Phys. J. B, in press.

  19. K. Schwarz, P. Blaha, and G. K. H. Madsen, Comp. Phys. Comm. 147, 71 (2002).

    Article  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  21. J. G. Gay, J. R. Smith, R. Richter, F. J. Arlinghaus, and R. H. Wagoner, J. Vac. Sci. Tech. A 2, 931 (1984);

    Article  Google Scholar 

  22. J. C. Boettger, Phys. Rev. B 49, 16798 (1994).

    Article  CAS  Google Scholar 

  23. T. Durakiewicz, A.J. Arko, J.J. Joyce, D.P. Moore, and S. Halas, Bull. Am. Phys. Soc. 46, No. 1 (2001).

    Google Scholar 

  24. T. Gouder, L. Havela, F. Wastin, and J. Rebizant, Europhys. Lett. 55, 705 (2001);

    Article  CAS  Google Scholar 

  25. L. Havela, T. Gouder, F. Wastin, and J. Rebizant, Phys. Rev. B 65, 235118 (2002).

    Article  Google Scholar 

  26. A. J. Arko, J. J. Joyce, L. Morales, J. M. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, H.R., Asok, K.R. A First-Principles Study of the (001), (111) and (110) Surfaces of δ-Pu. MRS Online Proceedings Library 893, 8930108 (2005). https://doi.org/10.1557/PROC-0893-JJ01-08

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0893-JJ01-08

Navigation