A First-Principles Study of the (001), (111) and (110) Surfaces of δ-Pu

Abstract

Full-potential linearized-augmented-plane-wave (FP-LAPW) calculations for δ-Pu films up to seven layers at the ground antiferromagnetic state including spin-orbit coupling effects reveal that surface energy rapidly converges and the semi-infinite surface energy is predicted to be 1.18, 1.21, and 1.42 J/m2 for δ-Pu (111), (001), and (110) films, respectively. Density of states show that the 5f electrons of the three surfaces tend to be localized with a sequence of (111)→(001)→(110). It is also predicted that the work function of δ-Pu (110) films exhibits a quantum size effect up to seven layers, while the work functions of δ-Pu (001) and (111) films show some oscillations when the number of layers is less than five, while it becomes relatively stable when the number of layers is greater than five. In addition, the work functions are predicted to be 3.41, 3.11, and 2.99 eV for δ-Pu (111), (001), and (110) films at the ground state, respectively. Comparisons with available experimental and theoretical results in the literature show good agreement.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. J. Katz, G. T. Seaborg, and L. R. Morss, The Chemistry of the Actinide Elements (Chapman and Hall, 1986);

    Google Scholar 

  2. #

    L. R. Morss and J. Fuger, Eds. Transuranium Elements: A Half Century (American Chemical Society, Washington, D. C. 1992);

  3. #

    J. J. Katz, L. R. Morss, J. Fuger, and N. M. Edelstein, Eds. Chemistry of the Actinide and Transactinide Elements (Springer-Verlag, New York, in press);

  4. #

    K. K. S. Pillay and K. C. Kim, Eds. Plutonium Futures – The Science, American Institute of Physics Conference Proceedings, 532 (2000);

  5. #

    G. D. Jarvinen, Ed. Plutonium Futures – The Science, American Institute of Physics Conference Proceedings, 673 (2003).

  6. 2.

    S. Y. Savrasov, G. Kotliar and E. Abrahams, Nature 410, 793 (2001);

    CAS  Article  Google Scholar 

  7. #

    X. Dai, S. Y. Savrasov, G. Kotliar, A. Migliori, H. Ledbetter, and E. Abrahams, Science 300, 953 (2003);

    CAS  Article  Google Scholar 

  8. #

    J. Wong, M. Krisch, D. L. Farber, F. Occelli, A. J. Schwartz, T.-C. Chiang, M. Wall, C. Boro, and R. Xu, Science 301, 1078 (2003);

    CAS  Article  Google Scholar 

  9. #

    P. Söderlind and B. Sadigh, Phys. Rev. Lett. 92, 185702 (2004);

    Article  Google Scholar 

  10. #

    P. Söderlind, O. Eriksson, B. Johansson, and J.M. Wills, Phys. Rev. B 55, 1997 (1997);

    Article  Google Scholar 

  11. #

    B. Sadigh, P. Söderlind, and W. G. Wolfer, Phys. Rev. B 68, 241101(R) (2003);

    Article  Google Scholar 

  12. #

    S. Heathman, R. G. Haire, T. Le Bihan, A. Lindbaum, K. Litfin, Y. Meresse, and H. Libotte, Phys. Rev. Lett. 85, 2961 (2000).

    CAS  Article  Google Scholar 

  13. 3.

    A. K. Ray and J. C. Boettger, Eur. Phys. J. B 27, 429 (2002); Phys. Rev. B 70, 085418 (2004);

    CAS  Article  Google Scholar 

  14. #

    J. C. Boettger and A. K. Ray, Int. J. Quant. Chem., 105, 564 (2005);

    CAS  Article  Google Scholar 

  15. #

    X. Wu and A. K. Ray, Phys. Rev. B 72, 045115 (2005);

    Article  Google Scholar 

  16. #

    M. N. Huda and A. K. Ray, Eur. Phys. J. B 40, 337 (2004); Physica B 352, 5 (2004); Eur. Phys. J. B 43, 131 (2005); Physica B 366, 95 (2005); Phys. Rev. B 72, 085101 (2005); Int. J. Quant. Chem. 105, 280 (2005);

    CAS  Article  Google Scholar 

  17. #

    H. R. Gong and A. K. Ray, Eur. Phys. J. B, 48, 409 (2005);

    CAS  Article  Google Scholar 

  18. #

    D. Gao and A. K. Ray, Eur. Phys. J. B, in press.

  19. 4.

    K. Schwarz, P. Blaha, and G. K. H. Madsen, Comp. Phys. Comm. 147, 71 (2002).

    Article  Google Scholar 

  20. 5.

    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Article  Google Scholar 

  21. 6.

    J. G. Gay, J. R. Smith, R. Richter, F. J. Arlinghaus, and R. H. Wagoner, J. Vac. Sci. Tech. A 2, 931 (1984);

    Article  Google Scholar 

  22. #

    J. C. Boettger, Phys. Rev. B 49, 16798 (1994).

    CAS  Article  Google Scholar 

  23. 7.

    T. Durakiewicz, A.J. Arko, J.J. Joyce, D.P. Moore, and S. Halas, Bull. Am. Phys. Soc. 46, No. 1 (2001).

    Google Scholar 

  24. 8.

    T. Gouder, L. Havela, F. Wastin, and J. Rebizant, Europhys. Lett. 55, 705 (2001);

    CAS  Article  Google Scholar 

  25. #

    L. Havela, T. Gouder, F. Wastin, and J. Rebizant, Phys. Rev. B 65, 235118 (2002).

    Article  Google Scholar 

  26. 9.

    A. J. Arko, J. J. Joyce, L. Morales, J. M. Wills, J. Lashley, F. Wastin, and J. Rebizant, Phys. Rev. B 62, 1773 (2000).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. R. Gong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gong, H.R., Asok, K.R. A First-Principles Study of the (001), (111) and (110) Surfaces of δ-Pu. MRS Online Proceedings Library 893, 8930108 (2005). https://doi.org/10.1557/PROC-0893-JJ01-08

Download citation