Role of deep levels in DC current aging of GaN/InGaN Light-Emitting Diodes studied by Capacitance and Photocurrent Spectroscopy


We present a combined Capacitance-Voltage (C-V), Deep Level Transient Spectroscopy (DLTS) and Photocurrent (PC) study of short-term instabilities of InGaN/GaN LEDs submitted to forward current aging tests at room temperature. C-V profiles detect changes consisting in apparent doping and/or charge concentration increase within the quantum wells. This increase is correlated to dramatic modifications in the DLTS spectrum when the reverse bias and filling pulse are properly adjusted in order to probe the quantum well region. The new distribution of the electronic levels detected by DLTS could explain the observed decrease in the light emission efficiency [1,2] of the device, as the deep levels generated during the stress may provide alternative recombination paths for free carriers. The photocurrent spectra do not change in shape during stress, although their amplitude slightly decreases. This is related to a decrease of the device yield, in this photodetector configuration, with increasing aging time. Thus, we can suggest that the introduction of new defect levels in the bulk material lowers the free carrier mobility.

This is a preview of subscription content, access via your institution.


  1. A. Castaldini, A. Cavallini, L. Rigutti, M. Meneghini, S. Levada, G. Meneghesso, E. Zanoni, V. Härle, T. Zahner, and U. Zehnder, Phys. stat. sol. (c), 2 (7), 2862 (2005).

    CAS  Article  Google Scholar 

  2. F. Rossi, M. Pavesi, M. Meneghini, G. Salviati, M. Manfredi, G. Meneghesso, E. Zanoni, A. Castaldini, A. Cavallini, L. Rigutti, U. Strauss, U. Zehnder, J. Appl. Phys., submitted.

  3. T. Yanagisawa, T. Kojima, Microelectronics Reliability, 43(6), 977–980 (2003).

    CAS  Article  Google Scholar 

  4. A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, J. Kim, B. Luo, R. Mehandru, F. Ren, K.P. Lee, S.J. Pearton, A.V. Osinsky, and P.E. Norris, J. Appl. Phys. 91, 5203 (2002).

    CAS  Article  Google Scholar 

  5. D. L. Barton et al., Microelectronics Reliability, 39, 1219–1227 (1999).

    Article  Google Scholar 

  6. Y. Zohta, Journal of Crystal Growth, 189 /190, 816–819, (1998).

    Article  Google Scholar 

  7. Z. Q. Fang, D. C. Reynolds, and D. C. Look, J. Electron. Mat. 29, 448 (2000)

    CAS  Article  Google Scholar 

  8. D. K. 7, Semiconductor Material and Device Characterization (Wiley-Interscience, New York, 1998).

    Google Scholar 

  9. C. R. Moon, B. D. Choe, S. D. Kwon, H. K. Shin, and H. J. Lim, J. Appl. Phys. 84, 2673 (1998).

    CAS  Article  Google Scholar 

  10. P. Blood and J. W. Orton The electrical characterization of semiconductors: majority carriers and electron states (London: Academic Press, 1989) p 295–302 and p 369–371

    Google Scholar 

  11. M. L. Lucia, J. L. Hernandez-Rojas, C. Leon, and I. Mártil, Eur. J. Phys. 14, 86 (1993).

    Article  Google Scholar 

  12. M. Ershov, B. Yaldiz, A. G. U. Perera, S. G. Matsik, H. C. Liu, M. Buchanan, Z. R. Wasilewski, and M. D. Williams, Infrared Phys. Technol. 42, 259 (2001)

    Article  Google Scholar 

  13. B.M. Tschirner, F. Morier-Genoud, D. Martin, and F. K. Reinhart, J. Appl. Phys. 79, 7005 (1996).

    CAS  Article  Google Scholar 

  14. H.K. Cho, C.S. Kim and C. H. Hong, J. Appl. Phys. 94, 1485 (2003

    CAS  Article  Google Scholar 

  15. C.B. Soh, S.J. Chua, H.F. Lim, D.Z. Chi, W. Liu and S. Tripathy, J. Phys. Cond. Mat., 16, 6305 (2004).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Castaldini.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castaldini, A., Cavallini, A., Rigutti, L. et al. Role of deep levels in DC current aging of GaN/InGaN Light-Emitting Diodes studied by Capacitance and Photocurrent Spectroscopy. MRS Online Proceedings Library 892, 1211 (2005).

Download citation