Temperature dependence of transport properties of InN films

Abstract

The temperature dependence of Hall mobility, µ, and carrier density, Ne, for thin InN films grown by Molecular Beam Epitaxy and Plasma Source Molecular Beam Epitaxy have been investigated. For temperature up to 300 K, a large temperature-independent Ne is observed in films grown by the above two techniques. However, for higher temperatures, carrier density (Ne) increases with temperature. The characteristic behavior of the mobility for the films with low carrier density is different from that of the high carrier density film, particularly at low temperatures. The low carrier density film shows a peak ~250 K in mobility as a function of temperature which is contrast to the temperature independent mobility observed for the high density film for T < 300 K. We have investigated theoretically the effect of concentration of donor, acceptor, and threading dislocations on the carrier mobility in these films. Various electron-scattering mechanisms for the mobility in these films have been discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    V. Yu Davydov, et al., Phys. Stat. Sol. (b) 229, R1 (2002); V. Yu Davydov, et al., Phys. Stat. Sol. (b) 230, R4 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    J.S. Thakur, D. Haddad, V.M. Naik, R. Naik, G.W., H. Lu, and W. J. Schaff, Phys. Rev. B, 71, 115203 (2005).

    Article  Google Scholar 

  4. 4.

    D.C. Look, H. Lu, W.J. Schaff, J. Jansinski and Z. Liliental-Weber, Appl. Phys. Lett. 80, 258 (2002); D. W. Jenkins and J.D. Dow, Phys. Rev. B, 39, 3317(1989).

    CAS  Article  Google Scholar 

  5. 5.

    K. Osamura, K. Nakajima, and Y. Murakai, Solid State Commun. 11, 617 (1972).

    CAS  Article  Google Scholar 

  6. 6.

    T.L. Tansley and C.P. Foley, J. Appl. Phys. 59, 3241, (1986); ibid, 60, 2092 (1986).

    CAS  Article  Google Scholar 

  7. 7.

    J.S. Thakur, D. Haddad, V.M. Naik, R. Naik, and G.W. Auner, J. Appl. Phys. 95, 4795 (2004).

    CAS  Article  Google Scholar 

  8. 8.

    T.V. Shubina, S.V. Ivanov, V. N. Jmerik, D. D. Solnyshkov, V. A. Vekshin, P. S. Kop'ev, A. Vasson, J. Leymarie, A. Kavokin, H. Amano and K. Shimono, A. Kasic and B. Monemar, Phys. Rev. Lett. 92, 117407 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    D.B. Haddad, J.S. Thakur, V.M. Naik, G.W. Auner, R. Naik, and L.E. Wenger, Mat. Res. Soc. Proc., Vol. 743, L11.22.1–6 (2003); D.B. Haddad, H. Dai, R. Naik, C. Morgan, V.M. Naik, J.S. Thakur, G.W. Auner, L.E. Wenger, H. Lu, and W.J. Schaff, Mat. Res. Soc. Symp. Proc. Vol. 798, Y12.7.1-6 (2004).

    Google Scholar 

  10. 10.

    I. Mahboob, T.D. Veal, C. F. McConville, H. Lu and W. J. Schaff, Phys. Rev. Lett. 92, 036804–1 (2004); I. Mahboob, T.D. Veal, L. F. J. Piper, C. F. McConville, H. Lu, W. J. Schaff, J. Furthmuller and F. Bechstedt, Phys. Rev. B. 69, 201307(R) (2004)

    CAS  Article  Google Scholar 

  11. 11.

    J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, and W.J. Schaff, Phys. Rev. B. 66, 201403 (2002); H. Lu, W. J. Schaff, H. Hwang, H. Wu, G. Koley, and L.F. Eastman, Appl. Phys. Lett. 79, 1489 (2001).

    Article  Google Scholar 

  12. 12.

    V.M. Naik, R. Naik, D.B. Haddad, J.S. Thakur, G.W. Auner, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 86, 201913 (2005).

    Article  Google Scholar 

  13. 13.

    D.C. Look, D.C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, Phys. Rev. Lett. 92, 117407 (2004).

    Article  Google Scholar 

  14. 14.

    D.C. Look, D.C. Reynolds, J. W. Hemsky, J. R. Sizelove, R. L. Jones, and R. J. Molnar, Phys. Rev. Lett. 79, 2273 (1997).

    CAS  Article  Google Scholar 

  15. 15.

    D.C. Look and J. R. Sizelove, Phys. Rev. Lett. 82, 1237 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    D.C. Look, Electical Characterization of GaAs Materials and Devices, (Wiley, New York, 1989).

    Google Scholar 

  17. 17.

    J. Bardeen and W. Shockley, Phys. Rev. 80, 72 (1950).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by NSF-IGERT-DGE grant No. 9870720 and by the Center for Smart Sensors and Integrated Microsystems at the Wayne State University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J.S. Thakur.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thakur, J., Naik, R., Naik, V. et al. Temperature dependence of transport properties of InN films. MRS Online Proceedings Library 892, 806 (2005). https://doi.org/10.1557/PROC-0892-FF08-06

Download citation